Advertisement

ExoFlex: An Upper-Limb Cable-Driven Exosuit

  • David PontEmail author
  • Aldo Francisco Contreras
  • José Luis Samper
  • Francisco Javier Sáez
  • Manuel Ferre
  • Miguel Ángel Sánchez
  • Ricardo Ruiz
  • Ángel García
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

This paper presents ExoFlex, an upper-limb flexible exoskeleton (exosuit) intended for assistance in elbow and shoulder rehabilitation therapies. The soft nature of the device allows it to easily adapt to human biomechanics. The presented exosuit is equipped with a cable-driven transmission in which torque is generated by two direct current (DC) motors. A super-twisting sliding mode controller (SMC) has been simulated and implemented for elbow and shoulder flexion and extension movements. ExoFlex has proven to effectively assist its wearer in experimental tests.

Keywords

Exosuit Soft-robot Sliding-mode control Cable-driven Rehabilitation 

Notes

Acknowledgements

This work has been supported by the Spanish Ministry of Economy, Industry and Competitiveness, under the grant ExoFlex (DPI 2015-68842-R) and the I\(+\)D\(+\)I Own Program of the Universidad Politécnica de Madrid.

References

  1. 1.
    Marcheschi, S., Salsedo, F., Fontana, M., Bergamasco, M.: Body extender: whole body exoskeleton for human power augmentation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 611–616. IEEE (2011).  https://doi.org/10.1109/ICRA.2011.5980132
  2. 2.
    Veneman, J.F., Kruidhof, R., Hekman, E.E., Ekkelenkamp, R., Van Asseldonk, E.H., Van Der Kooij, H.: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007).  https://doi.org/10.1109/TNSRE.2007.903919CrossRefGoogle Scholar
  3. 3.
    Lessard, S., Pansodtee, P., Robbins, A., Trombadore, J.M., Kurniawan, S., Teodorescu, M.: A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 26(8), 1604–1617 (2018).  https://doi.org/10.1109/TNSRE.2018.2854219CrossRefGoogle Scholar
  4. 4.
    Cappello, L., Pirrera, A., Weaver, P., Masia, L.: A series elastic composite actuator for soft arm exosuits. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 61–66. IEEE (2015).  https://doi.org/10.1109/ICORR.2015.7281176
  5. 5.
    Natividad, R., Yeow, C.H.: Development of a soft robotic shoulder assistive device for shoulder abduction. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 989–993. IEEE (2016).  https://doi.org/10.1109/BIOROB.2016.7523758
  6. 6.
    Dinh, B.K., Xiloyannis, M., Antuvan, C.W., Cappello, L., Masia, L.: Hierarchical cascade controller for assistance modulation in a soft wearable arm exoskeleton. IEEE Robot. Autom. Lett. 2(3), 1786–1793 (2017).  https://doi.org/10.1109/LRA.2017.2668473CrossRefGoogle Scholar
  7. 7.
    Canesi, M., Xiloyannis, M., Ajoudani, A., Bicchi, A., Masia, L.: Modular one-to-many clutchable actuator for a soft elbow exosuit. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 1679–1685. IEEE (2017).  https://doi.org/10.1109/ICORR.2017.8009489
  8. 8.
    Chiaradia, D., Xiloyannis, M., Antuvan, C.W., Frisoli, A., Masia, L.: Design and embedded control of a soft elbow exosuit. In: 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp. 565–571. IEEE (2018).  https://doi.org/10.1109/ROBOSOFT.2018.8405386
  9. 9.
    Wang, Y., Yan, F., Ju, F., Chen, B., Wu, H.: Optimal nonsingular terminal sliding mode control of cable-driven manipulators using super-twisting algorithm and time-delay estimation. IEEE Access 6, 61039–61049 (2018).  https://doi.org/10.1109/ACCESS.2018.2875685CrossRefGoogle Scholar
  10. 10.
    Riani, A., Madani, T., Benallegue, A., Djouani, K.: Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton. Control Eng. Pract. 75, 108–117 (2018).  https://doi.org/10.1016/j.conengprac.2018.02.013CrossRefGoogle Scholar
  11. 11.
    Niu, J., Yang, Q., Chen, G., Song, R.: Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. In: 2017 International Conference on Rehabilitation Robotics (ICORR), pp. 664–669. IEEE (2017).  https://doi.org/10.1109/ICORR.2017.8009324
  12. 12.
    Jarrett, C., McDaid, A.: Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 25(7), 976–986 (2017).  https://doi.org/10.1109/TNSRE.2017.2676765CrossRefGoogle Scholar
  13. 13.
    Magermans, D., Chadwick, E., Veeger, H., Van Der Helm, F.: Requirements for upper extremity motions during activities of daily living. Clin. Biomech. 20(6), 591–599 (2005).  https://doi.org/10.1016/j.clinbiomech.2005.02.006CrossRefGoogle Scholar
  14. 14.
    Namdari, S., Yagnik, G., Ebaugh, D.D., Nagda, S., Ramsey, M.L., Williams Jr., G.R., Mehta, S.: Defining functional shoulder range of motion for activities of daily living. J. Shoulder Elbow Surg. 21(9), 1177–1183 (2012).  https://doi.org/10.1016/j.jse.2011.07.032CrossRefGoogle Scholar
  15. 15.
    Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002).  https://doi.org/10.1053/apmr.2001.33101CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre for Automation and Robotics (CAR) UPM-CSICUniversidad Politécnica de MadridMadridSpain
  2. 2.Escuela Técnica Superior de Ingenieros Industriales ETSII UPMUniversidad Politécnica de MadridMadridSpain

Personalised recommendations