Advertisement

Velocity-Based Heuristic Evaluation for Path Planning and Vehicle Routing for Victim Assistance in Disaster Scenarios

  • Manuel Toscano-MorenoEmail author
  • Anthony Mandow
  • María Alcázar Martínez
  • Alfonso García-Cerezo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1093)

Abstract

Natural and human-made disasters require effective victim assistance and last-mile relief supply operations with teams of ground vehicles. In these applications, digital elevation models (DEM) can provide accurate knowledge for safe vehicle motion planning but grid representation results in very large search graphs. Furthermore, travel time, which becomes a crucial cost optimization criterion, may be affected by inclination and other challenging terrain characteristics. In this paper, our goal is to evaluate a search heuristic function based on anisotropic vehicle velocity restrictions for building the cost matrix required for multi-vehicle routing on natural terrain and disaster sites. The heuristic is applied to compute the fastest travel times between every pair of matrix elements by means of a path planning algorithm. The analysis is based on a case study on the ortophotographic DEM of natural terrain with different target points, where the proposed heuristic is compared against an exhaustive search solution.

Keywords

Multi-robot team Heuristics Search and rescue Path planning Vehicle routing problem 

Notes

Acknowledgments

This work has received funding from the national project RTI2018-093421-B-I00 (Spanish Government), Universidad de Málaga (Andalucía Tech) and the grant BES-2016-077022 of the European Social Fund.

References

  1. 1.
    Bae, J., Chung, W.: Heuristics for two depot heterogeneous unmanned vehicle path planning to minimize maximum travel cost. Sensors 19(11) (2019).  https://doi.org/10.3390/s19112461CrossRefGoogle Scholar
  2. 2.
    Bruni, M.E., Beraldi, P., Khodaparasti, S.: A fast heuristic for routing in post-disaster humanitarian relief logistics. Transp. Res. Procedia 30, 304–313 (2018).  https://doi.org/10.1016/j.trpro.2018.09.033CrossRefGoogle Scholar
  3. 3.
    Choi, Y., Chen, M., Choi, Y., Briceno, S., Mavris, D.: Multi-UAV trajectory optimization utilizing a NURBS-based terrain model for an aerial imaging mission. J. Intell. Robot. Syst.: Theory Appl. (2019).  https://doi.org/10.1007/s10846-019-01027-9CrossRefGoogle Scholar
  4. 4.
    Conesa-Muñoz, J., Pajares, G., Ribeiro, A.: Mix-opt: a new route operator for optimal coverage path planning for a fleet in an agricultural environment. Expert Syst. Appl. 54, 364–378 (2016).  https://doi.org/10.1016/j.eswa.2015.12.047CrossRefGoogle Scholar
  5. 5.
    Faied, M., Mostafa, A., Girard, A.: Vehicle routing problem instances: application to multi-UAV mission planning. In: AIAA Guidance, Navigation, and Control Conference (2010).  https://doi.org/10.2514/6.2010-8435
  6. 6.
    Fernández-Lozano, J.J., Mandow, A., Martín-Guzman, M., Martín-Avila, J., Serón, J., Martínez, J.L., Gomez-Ruiz, J.A., Socarrás-Bertiz, C., Miranda-Paez, J., García-Cerezo, A.: Integration of a canine agent in a wireless sensor network for information gathering in search and rescue missions. In: IEEE International Conference on Intelligent Robots and Systems, pp. 5685–5690 (2018).  https://doi.org/10.1109/IROS.2018.8593849
  7. 7.
    Garrido, S., Moreno, L., Martín, F., Álvarez, D.: Fast marching subjected to a vector field-path planning method for Mars rovers. Expert Syst. Appl. 78, 334–346 (2017).  https://doi.org/10.1016/j.eswa.2017.02.019CrossRefGoogle Scholar
  8. 8.
    Műhlbacher, C., Gspandl, S., Reip, M., Steinbauer, G.: Adapting edge weights for optimal paths in a navigation graph. Mech. Mach. Sci. 49, 372–380 (2018).  https://doi.org/10.1007/978-3-319-61276-8_41CrossRefGoogle Scholar
  9. 9.
    Muñoz, P., R-Moreno, M.D., Castaño, B.: 3Dana: a path planning algorithm for surface robotics. Eng. Appl. Artif. Intell. 60, 175–192 (2017).  https://doi.org/10.1016/j.engappai.2017.02.010CrossRefGoogle Scholar
  10. 10.
    Muñoz-Morera, J., Alarcon, F., Maza, I., Ollero, A.: Combining a hierarchical task network planner with a constraint satisfaction solver for assembly operations involving routing problems in a multi-robot context. Int. J. Adv. Robot. Syst. 15(3) (2018).  https://doi.org/10.1177/1729881418782088CrossRefGoogle Scholar
  11. 11.
    Ropero, F., Muñoz, P., R-Moreno, M.: TERRA: a path planning algorithm for cooperative UGV-UAV exploration. Eng. Appl. Artif. Intell. 78, 260–272 (2019).  https://doi.org/10.1016/j.engappai.2018.11.008CrossRefGoogle Scholar
  12. 12.
    San Juan, V., Santos, M., Andújar, J.: Intelligent UAV map generation and discrete path planning for search and rescue operations. Complexity 2018 (2018).  https://doi.org/10.1155/2018/6879419CrossRefGoogle Scholar
  13. 13.
    Gonzalez-de Soto, M., Emmi, L., Garcia, I., Gonzalez-de Santos, P.: Reducing fuel consumption in weed and pest control using robotic tractors. Comput. Electron. Agric. 114, 96–113 (2015).  https://doi.org/10.1016/j.compag.2015.04.003CrossRefGoogle Scholar
  14. 14.
    Wang, H., Zhang, H., Wang, K., Zhang, C., Yin, C., Kang, X.: Off-road path planning based on improved ant colony algorithm. Wirel. Pers. Commun. 102(2), 1705–1721 (2018).  https://doi.org/10.1007/s11277-017-5229-5CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manuel Toscano-Moreno
    • 1
    Email author
  • Anthony Mandow
    • 1
  • María Alcázar Martínez
    • 1
  • Alfonso García-Cerezo
    • 1
  1. 1.Systems Engineering and Automation DepartmentUniversidad de MálagaMálagaSpain

Personalised recommendations