The Global Cauchy Problem for the Plate Equation in Weighted Sobolev Spaces

  • Alessia AscanelliEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We consider the initial value problem for the plate equation with (t, x) −depending complex valued lower order terms. Under suitable decay conditions as |x|→ on the imaginary part of the subprincipal term we prove energy estimates in weighted Sobolev spaces. This provides also well posedness of the Cauchy problem in the Schwartz space \(\mathcal {S}(\mathbb R^n)\) and in \(\mathcal {S}^\prime (\mathbb R^n)\).


Plate equation Weighted Sobolev spaces Pseudodifferential operators 


  1. 1.
    A.Ascanelli, C.Boiti, L.Zanghirati. Well-posedness of the Cauchy problem for p-evolution equations. J. Differential Equations253 (2012), 2765–2795.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.Ascanelli, C.Boiti, L.Zanghirati. A Necessary condition for H Well-Posedness of p-evolution equations. Advances in Differential Equations21, n.12 (2016), 1165–1196.Google Scholar
  3. 3.
    A.Ascanelli, M.Cappiello. Schrödinger type equations in Gelfand-Shilov spaces. Journal de Mathématiques Pures et Appliquées132 (2019), 207–250.MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.Ascanelli, M.Cicognani, F.Colombini. The global Cauchy problem for a vibrating beam equation. J. Differential Equations247 (2009) 1440–1451.MathSciNetCrossRefGoogle Scholar
  5. 5.
    A.Ascanelli, M.Cicognani. Gevrey solutions for a vibrating beam equation. Rend. Sem. Mat. Univ. Pol. Torino67 (2009), n.2, 151–164.MathSciNetzbMATHGoogle Scholar
  6. 6.
    A.Ascanelli, M.Cappiello. Weighted energy estimates for p-evolution equations in SG classes. Journal of Evolution Equations15, n.3 (2015), 583–607.Google Scholar
  7. 7.
    M.Cicognani, M.Reissig. On Schrödinger type evolution equations with non-Lipschitz coefficients. Ann. Mat. Pura Appl.190, n.4 (2011), 645–665.Google Scholar
  8. 8.
    H.O. Cordes. The technique of pseudodifferential operators. Cambridge Univ. Press, 1995.CrossRefGoogle Scholar
  9. 9.
    Y.V. Egorov, B.-W. Schulze. Pseudo-differential operators, singularities, applications. Operator Theory: Advances and Applications, 93 Birkhäuser Verlag, Basel, 1997.Google Scholar
  10. 10.
    W. Ichinose. Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J. Math.21 (1984), 565–581.MathSciNetzbMATHGoogle Scholar
  11. 11.
    W.Ichinose. Sufficient condition on H well-posedness for Schrödinger type equations. Comm. Partial Differential Equations,9, n.1 (1984), 33–48.Google Scholar
  12. 12.
    K. Kajitani, A. Baba. The Cauchy problem for Schrödinger type equations. Bull. Sci. Math.119 (1995), 459–473.MathSciNetzbMATHGoogle Scholar
  13. 13.
    T. Kinoshita, H. Nakazawa. On the Gevrey wellposedness of the Cauchy problem for some non-Kowalewskian equations. J. Math. Pures Appl. 79 (2000), 295–305.Google Scholar
  14. 14.
    C. Parenti. Operatori pseudodifferenziali in \(\mathbb {R}^n\) e applicazioni. Ann. Mat. Pura Appl.93, 359–389 (1972).Google Scholar
  15. 15.
    E. Schrohe. Spaces of weighted symbols and weighted Sobolev spaces on manifolds. “Pseudodifferential Operators”, Proceedings Oberwolfach 1986. H. O. Cordes, B. Gramsch and H. Widom editors, Springer LNM, 1256 New York, 360–377 (1987).Google Scholar
  16. 16.
    B.-W. Schulze. Boundary value problems and singular pseudodifferential operators. J. Wiley & sons, Chichester, 1998.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità degli studi di FerraraFerraraItaly

Personalised recommendations