Advertisement

Divisible Load Framework and Close Form for Scheduling in Fog Computing Systems

  • Mojtaba Kazemi
  • Shamsollah GhanbariEmail author
  • Manochehr Kazemi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 978)

Abstract

Fog computing is a possible way to reduce the latency of requests which have been sent to the cloud centres. It means the jobs can be scheduled to fog systems before being sent to the cloud centres. There is an extensive literature concerning to scheduling in fog computing systems. This paper mainly proposes a divisible load framework for scheduling in fog computing system. The divisible load theory is a suitable method for scheduling of data intensive jobs. This paper illustrates that the divisible load scheduling(DLS) method can be performed in the area of fog computing. This paper proposes a three-layer architecture for load scheduling in fog computing using divisible load theory. We formulate a close form for the proposed model. Finally we solve the close form.

Keywords

Fog computing Divisible load scheduling Latency Close form 

References

  1. 1.
    Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp 13–16. ACMGoogle Scholar
  2. 2.
    Shamsollah G, Mohamed O (2014) Comprehensive review on divisible load theory: concepts, strategies, and approaches. Hindawi Publishing Corporation, Math Problems Eng.  https://doi.org/10.1155/2014/460354CrossRefGoogle Scholar
  3. 3.
    Cheng Y-C, Robertazzi Thomas G (1988) Distributed computation with communication delay. IEEE Trans Aerosp Electr Syst 24(6):700–712CrossRefGoogle Scholar
  4. 4.
    Agrawal R, Jagadish HV (1988) Partitioning techniques for large grained parallelism. IEEE Trans Comput 37(12):1627–1634CrossRefGoogle Scholar
  5. 5.
    Sohnn J, Robertazzi TG (1993) Optimal load sharing for a divisible job on a bus network. In: Proceedings of the 1993 conference on information sciences and systemsGoogle Scholar
  6. 6.
    Bharadwaj V, Li X, Ko CC (2000) Efficient partitioning and scheduling of computer vision and image processing data on bus networks using divisible load analysis. Image Vis Comput 18(11):919–938CrossRefGoogle Scholar
  7. 7.
    Lee C-K, Hamdi M (1995) Parallel image processing applications on a network of workstations. Parallel Comput 21(1):137–160CrossRefGoogle Scholar
  8. 8.
    Korkhov VV, Moscicki JT, Krzhizhanovskaya VV (2009) The user-level scheduling of divisible load parallel applications with resource selection and adaptive workload balancing on the grid. Syst J IEEE 3(1):121–130CrossRefGoogle Scholar
  9. 9.
    Chan SK, Veeravalli B, Ghose D (2001) Large matrix vector products on distributed bus networks with communication delays using the divisible load paradigm: performance analysis and simulation. Math Comput Simul 58(1):71–92MathSciNetCrossRefGoogle Scholar
  10. 10.
    Krijn R Van Der, Yang Y, Henri C (2005) Practical divisible load scheduling on grid platforms with APST-DV. In: The 19th IEEE international parallel and distributed processing symposiumGoogle Scholar
  11. 11.
    Yu D, Robertazzi TG (2003) Divisible load scheduling for grid computing. In: Fifteenth IASTED international conference on parallel and distributed computing and systems l(1):1–6Google Scholar
  12. 12.
    Suresh S, Huang H, Kim HJ (2015) Scheduling in compute cloud with multiple data banks using divisible load paradigm. IEEE Trans Aerosp Electr Syst 51(2):1288–1297CrossRefGoogle Scholar
  13. 13.
    Berliska J, Maciej D (2015) Scheduling multilayer divisible computations. RAIRO-Oper Res 49(2):339–368Google Scholar
  14. 14.
    Marszakowski Jdrzej M, Drozdowski M, Marszakowski J (2016) Time and energy performance of parallel systems with hierarchical memory. J Grid Comput 14(1):153–170CrossRefGoogle Scholar
  15. 15.
    Ghanbari S, Othman M, Leong WJ, Abu Bakar MR (2014) Multi-criteria based algorithm for scheduling divisible load. Lect Notes Electr Eng 285:547–554CrossRefGoogle Scholar
  16. 16.
    Shamsollah G, Mohamed O, Leong WJ, Abu Bakar MR (2016) Multi-objective method for divisible load scheduling in multi-level tree network. Future Gener Comput Syst 54:132–143CrossRefGoogle Scholar
  17. 17.
    Shamsollah G, Mohamed O, Leong WJ, Abu Bakar MR (2015) Priority-based divisible load scheduling using analytical hierarchy process. Appl Math Inf Sci 9(5):2541–2552MathSciNetGoogle Scholar
  18. 18.
    Bharadwaj V, Ghose D, Mani V, Robertazzi TG (1996) Sheduling divisible loads in parallel and distributed systems, vol 8. WileyGoogle Scholar
  19. 19.
    Robertazzi Thomas G (2003) Ten reasons to use divisible load theory. Computer 36(5):63–68CrossRefGoogle Scholar
  20. 20.
    Networking, Cisco Visual. Cisco global cloud index: Forecast and methodology 2015–2020. White paper (2016)Google Scholar
  21. 21.
    Carla M, Diala N, Sami Y, Glitho Roch H, Morrow Monique J, Polakos Paul A (2017) A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tutor 20(1):416–464Google Scholar
  22. 22.
    Luxiu Y, Juan L, Haibo L (2018) Tasks scheduling and resource allocation in fog computing based on containers for smart manufacturing. IEEE Trans Ind Inf 14(10):4712–4721CrossRefGoogle Scholar
  23. 23.
    Iorga M, Feldman L, Barton R, Martin MJ, Goren NS, Mahmoudi C (2018) Fog computing conceptual model. No. Special Publication (NIST SP)-500-325Google Scholar
  24. 24.
    Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. Internet of everything. Springer, Singapore, pp 103–130CrossRefGoogle Scholar
  25. 25.
    Nazmudeen N, Saleem Haja M, Wan AT, Buhari SM (2016) Improved throughput for power line communication (plc) for smart meters using fog computing based data aggregation approach. In: 2016 IEEE international smart cities conference (ISC2), pp 1–4. IEEE, 2016Google Scholar
  26. 26.
    Chun BG, Ihm S, Maniatis P, Naik M, Patti A (2011) Clonecloud: elastic execution between mobile device and cloud. In: Proceedings of the sixth conference on Computer systems (pp. 301–314). ACMGoogle Scholar
  27. 27.
    Kosta S, Aucinas A, Hui P, Mortier R, Zhang X (2012) ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: 2012 proceedings IEEE Infocom (pp 945–953). IEEEGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mojtaba Kazemi
    • 1
  • Shamsollah Ghanbari
    • 2
    Email author
  • Manochehr Kazemi
    • 2
  1. 1.Department of Computer EngineeringQom Branch, Islamic Azad UniversityQomIran
  2. 2.Department of Computer ScienceAshtian Branch, Islamic Azad UniversityAshtianIran

Personalised recommendations