Advertisement

CPA-to-CCA Transformation for KDM Security

  • Fuyuki KitagawaEmail author
  • Takahiro Matsuda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11892)

Abstract

We show that chosen plaintext attacks (CPA) security is equivalent to chosen ciphertext attacks (CCA) security for key-dependent message (KDM) security. Concretely, we show how to construct a public-key encryption (PKE) scheme that is KDM-CCA secure with respect to all functions computable by circuits of a-priori bounded size, based only on a PKE scheme that is KDM-CPA secure with respect to projection functions. Our construction works for KDM security in the single user setting.

Our main result is achieved by combining the following two steps. First, we observe that by combining the results and techniques from the recent works by Lombardi et al. (CRYPTO 2019), and by Kitagawa et al. (CRYPTO 2019), we can construct a reusable designated-verifier non-interactive zero-knowledge (DV-NIZK) argument system based on an IND-CPA secure PKE scheme and a secret-key encryption (SKE) scheme satisfying one-time KDM security with respect to projection functions. This observation leads to the first reusable DV-NIZK argument system under the learning-parity-with-noise (LPN) assumption. Then, as the second and main technical step, we show a generic construction of a KDM-CCA secure PKE scheme using an IND-CPA secure PKE scheme, a reusable DV-NIZK argument system, and an SKE scheme satisfying one-time KDM security with respect to projection functions. Since the classical Naor-Yung paradigm (STOC 1990) with a DV-NIZK argument system does not work for proving KDM security, we propose a new construction methodology to achieve this generic construction.

Moreover, we show how to extend our generic construction and achieve KDM-CCA security in the multi-user setting, by additionally requiring the underlying SKE scheme in our generic construction to satisfy a weak form of KDM security against related-key attacks (RKA-KDM security) instead of one-time KDM security. From this extension, we obtain the first KDM-CCA secure PKE schemes in the multi-user setting under the CDH or LPN assumption.

Keywords

Public-key encryption Key-dependent message security Chosen ciphertext security Designated-verifier non-interactive zero-knowledge argument 

Notes

Acknowledgement

We thank the anonymous reviewers of TCC 2019 for helpful comments, in particular the connections of our techniques with those by Barak et al. [6]. A part of this work was supported by JST CREST Grant Number JPMJCR19F6.

References

  1. 1.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the presence of key-cycles. In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005).  https://doi.org/10.1007/11555827_22CrossRefGoogle Scholar
  2. 2.
    Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS 2003, pp. 298–307 (2003) Google Scholar
  3. 3.
    Applebaum, B.: Key-dependent message security: generic amplification and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_29CrossRefGoogle Scholar
  4. 4.
    Applebaum, B.: Garbling XOR gates “For Free” in the standard model. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 162–181. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_10CrossRefGoogle Scholar
  5. 5.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  6. 6.
    Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_22CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055718CrossRefGoogle Scholar
  8. 8.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36492-7_6CrossRefzbMATHGoogle Scholar
  9. 9.
    Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055716CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_7CrossRefGoogle Scholar
  11. 11.
    Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17656-3_1CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_1CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_20CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_20CrossRefGoogle Scholar
  15. 15.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45708-9_5CrossRefGoogle Scholar
  16. 16.
    Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: 51st ACM STOC 2019, pp. 1082–1090 (2019)Google Scholar
  17. 17.
    Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation intractability from strong KDM-secure encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_4CrossRefGoogle Scholar
  18. 18.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_13CrossRefGoogle Scholar
  19. 19.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  20. 20.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC 1991, pp. 542–552 (1991)Google Scholar
  21. 21.
    Döttling, N.: Low noise LPN: KDM secure public key encryption and sample amplification. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–626. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_27CrossRefzbMATHGoogle Scholar
  22. 22.
    Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_1CrossRefzbMATHGoogle Scholar
  23. 23.
    Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33167-1_36CrossRefzbMATHGoogle Scholar
  24. 24.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st ACM STOC 2009, pp. 169–178 (2009)Google Scholar
  25. 25.
    Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_24CrossRefzbMATHGoogle Scholar
  26. 26.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th ACM STOC 1982, pp. 365–377 (1982)Google Scholar
  27. 27.
    Hajiabadi, M., Kapron, B.M.: Reproducible circularly-secure bit encryption: applications and realizations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 224–243. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_11CrossRefGoogle Scholar
  28. 28.
    Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new approach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_39CrossRefGoogle Scholar
  29. 29.
    Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Completeness of single-bit projection-KDM security for public key encryption. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 201–219. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_11CrossRefGoogle Scholar
  30. 30.
    Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor functions via key-dependent-message security. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 33–64. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26954-8_2CrossRefGoogle Scholar
  31. 31.
    Kitagawa, F., Tanaka, K.: A framework for achieving KDM-CCA secure public-key encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 127–157. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03329-3_5CrossRefGoogle Scholar
  32. 32.
    Kitagawa, F., Tanaka, K.: Key dependent message security and receiver selective opening security for identity-based encryption. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 32–61. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_2CrossRefGoogle Scholar
  33. 33.
    Koppula, V., Waters, B.: Realizing chosen ciphertext security generically in attribute-based encryption and predicate encryption. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 671–700. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26951-7_23CrossRefGoogle Scholar
  34. 34.
    Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New constructions of reusable designated-verifier NIZKs. IACR Cryptology ePrint Archive 242 (2019). Accessed 27 Feb 2019. A preliminary version of [35]Google Scholar
  35. 35.
    Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New constructions of reusable designated-verifier NIZKs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-26954-8_22CrossRefGoogle Scholar
  36. 36.
    Matsuda, T., Hanaoka, G.: Constructing and understanding chosen ciphertext security via puncturable key encapsulation mechanisms. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 561–590. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_23CrossRefGoogle Scholar
  37. 37.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC 1990, pp. 427–437 (1990)Google Scholar
  38. 38.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_35CrossRefGoogle Scholar
  39. 39.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS 1999, pp. 543–553 (1999)Google Scholar
  40. 40.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS 1986, pp. 162–167 (1986)Google Scholar
  41. 41.
    Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_9CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)TokyoJapan

Personalised recommendations