Advertisement

A Black-Box Construction of Fully-Simulatable, Round-Optimal Oblivious Transfer from Strongly Uniform Key Agreement

  • Daniele FrioloEmail author
  • Daniel Masny
  • Daniele Venturi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11891)

Abstract

We show how to construct maliciously secure oblivious transfer (M-OT) from a strengthening of key agreement (KA) which we call strongly uniform KA (SU-KA), where the latter roughly means that the messages sent by one party are computationally close to uniform, even if the other party is malicious. Our transformation is black-box, almost round preserving (adding only a constant overhead of up to two rounds), and achieves standard simulation-based security in the plain model.

As we show, 2-round SU-KA can be realized from cryptographic assumptions such as low-noise LPN, high-noise LWE, Subset Sum, DDH, CDH and RSA—all with polynomial hardness—thus yielding a black-box construction of fully-simulatable, round-optimal, M-OT from the same set of assumptions (some of which were not known before).

Keywords

Oblivious transfer Malicious security LPN 

Notes

Acknowledgments

We would like to thank Silas Richelson for a discussion on their commit-and-open protocol. We also thank the anonymous reviewers who helped removing wrong claims and clarifying the presentation of our results.

References

  1. 1.
    Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_8CrossRefGoogle Scholar
  2. 2.
    Alekhnovich, M.: More on average case vs approximation complexity. In: IEEE FOCS, pp. 298–307 (2003)Google Scholar
  3. 3.
    Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 468–499. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_16CrossRefGoogle Scholar
  4. 4.
    Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_16CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Yung, M.: Certifying cryptographic tools: the case of trapdoor permutations. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 442–460. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-48071-4_31CrossRefGoogle Scholar
  6. 6.
    Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_17CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_14CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–677. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_22CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_33CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 476–506. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03807-6_18CrossRefGoogle Scholar
  11. 11.
    Choudhuri, A.R., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. Cryptology ePrint Archive, Report 2019/216 (2019). https://eprint.iacr.org/2019/216
  12. 12.
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Delayed-input non-malleable zero knowledge and multi-party coin tossing in four rounds. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 711–742. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_24CrossRefGoogle Scholar
  13. 13.
    Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Round-optimal secure two-party computation from trapdoor permutations. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 678–710. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70500-2_23CrossRefGoogle Scholar
  14. 14.
    Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_27CrossRefGoogle Scholar
  15. 15.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 205–210. Springer, Boston, MA (1983).  https://doi.org/10.1007/978-1-4757-0602-4_19CrossRefGoogle Scholar
  16. 16.
    Friolo, D., Masny, D., Venturi, D.: A black-box construction of fully-simulatable, round-optimal oblivious transfer from strongly uniform key agreement. Cryptology ePrint Archive, Report 2018/473 (2018). https://eprint.iacr.org/2018/473
  17. 17.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_2CrossRefGoogle Scholar
  18. 18.
    Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity of OT extension. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 545–574. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_19CrossRefGoogle Scholar
  19. 19.
    Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_16CrossRefGoogle Scholar
  20. 20.
    Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_16CrossRefGoogle Scholar
  21. 21.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: IEEE FOCS, pp. 325–335 (2000)Google Scholar
  22. 22.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Goldreich, O., Rothblum, R.D.: Enhancements of trapdoor permutations. J. Cryptology 26(3), 484–512 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_18CrossRefGoogle Scholar
  26. 26.
    Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable oblivious transfer. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 265–282. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76900-2_16CrossRefGoogle Scholar
  27. 27.
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_23CrossRefGoogle Scholar
  28. 28.
    Haitner, I., Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions of protocols for secure computation. SIAM J. Comput. 40(2), 225–266 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_17CrossRefGoogle Scholar
  30. 30.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_37CrossRefGoogle Scholar
  31. 31.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_2CrossRefGoogle Scholar
  32. 32.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_23CrossRefGoogle Scholar
  33. 33.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
  34. 34.
    Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72540-4_6CrossRefGoogle Scholar
  35. 35.
    Kakvi, S.A., Kiltz, E., May, A.: Certifying RSA. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 404–414. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_25CrossRefGoogle Scholar
  36. 36.
    Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_5CrossRefGoogle Scholar
  37. 37.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_21CrossRefGoogle Scholar
  38. 38.
    Kilian, J.: Founding cryptography on oblivious transfer. In: ACM STOC, pp. 20–31 (1988)Google Scholar
  39. 39.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: ACM STOC, pp. 723–732 (1992)Google Scholar
  40. 40.
    Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: IEEE FOCS, pp. 364–373 (1997)Google Scholar
  41. 41.
    Lindell, Y.: Efficient fully-simulatable oblivious transfer. Chicago J. Theor. Comput. Sci. 2008 (2008). Article no 6Google Scholar
  42. 42.
    Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 519–538. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_29CrossRefzbMATHGoogle Scholar
  43. 43.
    Lindell, Y., Zarosim, H.: On the feasibility of extending oblivious transfer. J. Cryptology 31(3), 737–773 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lombardi, A., Schaeffer, L.: A note on key agreement and non-interactive commitments. Cryptology ePrint Archive, Report 2019/279 (2019). https://eprint.iacr.org/2019/279
  45. 45.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_5CrossRefGoogle Scholar
  46. 46.
    Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_23CrossRefGoogle Scholar
  47. 47.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)Google Scholar
  48. 48.
    Naor, M., Pinkas, B.: Computationally secure oblivious transfer. J. Cryptology 18(1), 1–35 (2005)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_17CrossRefGoogle Scholar
  50. 50.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31CrossRefGoogle Scholar
  51. 51.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report, Harvard University (1981)Google Scholar
  52. 52.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: ACM STOC, pp. 84–93 (2005)Google Scholar
  53. 53.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: IEEE FOCS, pp. 160–164 (1982)Google Scholar
  54. 54.
    Yao, A.C.: How to generate and exchange secrets (extended abstract). In: IEEE FOCS, pp. 162–167 (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceSapienza University of RomeRomeItaly
  2. 2.VISA ResearchPalo AltoUSA

Personalised recommendations