Advertisement

Numerical Method and Simulations

  • Vito Dario Camiola
  • Giovanni Mascali
  • Vittorio Romano
Chapter
  • 48 Downloads
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 31)

Abstract

The aim is to simulate the DG-MOSFET of first figure in this chapter with the model presented in Chap.  7 consisting of the Schrödinger–Poisson block ( 1.25), ( 1.27) coupled to the energy-transport equations ( 7.30), ( 7.31).

References

  1. 28.
    Ben Abdallah, N., Caceres, M.J., Carrillo, J.A., Vecil, F.: A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs. J. Comput. Phys. 228(17), 6553–6571 (2009) Blokhin, A.M., Birkin, A.D.: Stability analysis of supersonic regime past infinite wedge. J. Appl. Mech. Tech. Phys. 36(4), 496–512 (1996)MathSciNetCrossRefGoogle Scholar
  2. 45.
    Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24, 417–436 (2012)MathSciNetCrossRefGoogle Scholar
  3. 46.
    Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET by a non-parabolic energy-transport model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 58, 321–343 (2012)MathSciNetCrossRefGoogle Scholar
  4. 67.
    Degond, P., Jüngel, A., Pietra, P.: Numerical discretization of energy-transport models for semiconductors with nonparabolic band structure. SIAM J. Sci. Comput. 22, 986–1007 (2000)MathSciNetCrossRefGoogle Scholar
  5. 79.
    Galler, M., Schürrer, F.: A deterministic Solver to the Boltzmann-Poisson system including quantization effects for silicon-MOSFETs. In: Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 531–536. Springer, Berlin (2008)CrossRefGoogle Scholar
  6. 145.
    Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Mod. 55, 1003–1020 (2012)MathSciNetCrossRefGoogle Scholar
  7. 176.
    Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221, 439–468 (2007)MathSciNetCrossRefGoogle Scholar
  8. 196.
    Vecil, F., Mantas, J.M., Caceres, M.J., Sampedro, C., Godoy, A., Gamiz, F.: A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo. Comput. Math. Appl. 67(9), 1703–1721 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vito Dario Camiola
    • 1
  • Giovanni Mascali
    • 2
  • Vittorio Romano
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations