Advertisement

Mathematical Models for the Double-Gate MOSFET

  • Vito Dario Camiola
  • Giovanni Mascali
  • Vittorio Romano
Chapter
  • 47 Downloads
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 31)

Abstract

In this chapter the ideas presented in the previous sections will be employed to get a mathematical model for the simulation of a Double Gate MOSFET (hereafter DG-MOSFET). This model is based on the Schrödinger–Poisson system coupled to a set of energy-transport equations, one for each subband, arising from the moment systems associated to the equations ( 1.28) with closure relations obtained by MEP.

References

  1. 5.
    Anile, A.M., Mascali, G.: Theoretical foundations for tail electron hydrodynamical models in semiconductors. Appl. Math. Lett. 14, 245–252 (2001)MathSciNetCrossRefGoogle Scholar
  2. 7.
    Anile, A.M., Romano, V.: Non parabolic band transport in semiconductors: closure of the moment equations. Contin. Mech. Thermodyn. 11, 307–325 (1999)MathSciNetCrossRefGoogle Scholar
  3. 28.
    Ben Abdallah, N., Caceres, M.J., Carrillo, J.A., Vecil, F.: A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs. J. Comput. Phys. 228(17), 6553–6571 (2009) Blokhin, A.M., Birkin, A.D.: Stability analysis of supersonic regime past infinite wedge. J. Appl. Mech. Tech. Phys. 36(4), 496–512 (1996)MathSciNetCrossRefGoogle Scholar
  4. 30.
    Blokhin, A.M., Tkachev, D.L.: Local-in-time well-posedness of a regularized mathematical model for silicon MESFET. Z. Angew. Math. Phys. 61, 849–864 (2010)MathSciNetCrossRefGoogle Scholar
  5. 43.
    Camiola, V.D., Romano, V.: 2DEG-3DEG charge transport model for MOSFET based on the maximum entropy principle. SIAM J. Appl. Math. 73, 1439–1459 (2013)MathSciNetCrossRefGoogle Scholar
  6. 47.
    Camiola, V.D., Mascali, G., Romano, V.: An improved 2D–3D model for charge transport based on the maximum entropy principle. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0735-6 MathSciNetCrossRefGoogle Scholar
  7. 79.
    Galler, M., Schürrer, F.: A deterministic Solver to the Boltzmann-Poisson system including quantization effects for silicon-MOSFETs. In: Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 531–536. Springer, Berlin (2008)CrossRefGoogle Scholar
  8. 97.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)CrossRefGoogle Scholar
  9. 99.
    Jüngel, A.: Transport Equations for Semiconductors. Springer, Berlin (2009)CrossRefGoogle Scholar
  10. 112.
    La Rosa, S., Mascali, G., Romano, V.: Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case. SIAM J. Appl. Math. 70, 710–734 (2009)MathSciNetCrossRefGoogle Scholar
  11. 138.
    Mascali, G.: A hydrodynamic model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26, 477–496 (2015)MathSciNetCrossRefGoogle Scholar
  12. 139.
    Mascali, G.: A new formula for thermal conductivity based on a hierarchy of hydrodynamical models. J. Stat. Phys. 163, 1268–1284 (2016)MathSciNetCrossRefGoogle Scholar
  13. 140.
    Mascali, G., Romano, V.: Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle. Contin. Mech. Thermodyn. 14, 405–423 (2002)MathSciNetCrossRefGoogle Scholar
  14. 141.
    Mascali, G., Romano, V.: Si and GaAs mobility derived from a hydrodynamical model for semiconductors based on the maximum entropy principle. Phys. A 352, 459–476 (2005)CrossRefGoogle Scholar
  15. 143.
    Mascali, G., Romano, V.: Hydrodynamic subband model for semiconductors based on the maximum entropy principle. Nuovo Cimento C 33, 155–163 (2010)zbMATHGoogle Scholar
  16. 144.
    Mascali, G., Romano, V.: A hydrodynamical model for holes in silicon semiconductors: the case of non-parabolic warped bands. Math. Comput. Mod. 53, 213–229 (2011)MathSciNetCrossRefGoogle Scholar
  17. 145.
    Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Mod. 55, 1003–1020 (2012)MathSciNetCrossRefGoogle Scholar
  18. 153.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefGoogle Scholar
  19. 154.
    Muscato, O.: The Onsager reciprocity principle as a check of consistency for semiconductor carrier transport models. Phys. A 289, 422–458 (2001)MathSciNetCrossRefGoogle Scholar
  20. 157.
    Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A Math. Theor. 44, 105501 (2011)MathSciNetCrossRefGoogle Scholar
  21. 158.
    Muscato, O., Di Stefano, V.: Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys. 110, 093706 (2011)CrossRefGoogle Scholar
  22. 159.
    Muscato, O., Di Stefano, V.: Hydrodynamic modeling of silicon quantum wires. J. Comput. Electron. 11, 45–55 (2012)CrossRefGoogle Scholar
  23. 163.
    Nishibara, S., Suzuki, M.: Hierarchy of Semiconductor Equations: Relaxation Limits with Initial Layers for Large Initial Data. MSJ Memoirs, vol. 26. The Mathematical Society of Japan, Tokyo (2011)Google Scholar
  24. 164.
    Pierret, R.F.: Semiconductor Device Fundamentals. Addison-Wesley, Reading (1996)Google Scholar
  25. 168.
    Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)MathSciNetCrossRefGoogle Scholar
  26. 171.
    Ren, Z.: Nanoscale MOSFETs: physics, simulation and design. Ph.D. Thesis. Purdue University, West Lafayette (2001)Google Scholar
  27. 173.
    Romano, V.: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Contin. Mech. Thermodyn. 12, 31–51 (2000)MathSciNetCrossRefGoogle Scholar
  28. 174.
    Romano, V.: Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices. Math. Methods Appl. Sci. 24, 439–471 (2001)MathSciNetCrossRefGoogle Scholar
  29. 176.
    Romano, V.: 2D numerical simulation of the MEP energy-transport model with a finite difference scheme. J. Comput. Phys. 221, 439–468 (2007)MathSciNetCrossRefGoogle Scholar
  30. 180.
    Romano, V., Russo, G.: Numerical solution for hydrodymamical models of semiconductors. Math. Models Methods Appl. Sci. 10, 1099–1120 (2000)MathSciNetCrossRefGoogle Scholar
  31. 181.
    Romano, V., Zwierz, M.: Electron-phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 61, 1111–1131 (2010)MathSciNetCrossRefGoogle Scholar
  32. 196.
    Vecil, F., Mantas, J.M., Caceres, M.J., Sampedro, C., Godoy, A., Gamiz, F.: A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo. Comput. Math. Appl. 67(9), 1703–1721 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vito Dario Camiola
    • 1
  • Giovanni Mascali
    • 2
  • Vittorio Romano
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations