Application of MEP to Silicon

  • Vito Dario Camiola
  • Giovanni Mascali
  • Vittorio Romano
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 31)


In this chapter MEP is applied to close the moment equations for electrons in silicon semiconductors. In our model we consider the electrons distributed in the six X-valleys assumed as equivalent. The approximation given by Kane will be used as dispersion relation.


  1. 3.
    Alí, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamic model for covalent semiconductors with applications to GaN and SiC. Acta Appl. Math. 122, 335–348 (2012)zbMATHGoogle Scholar
  2. 7.
    Anile, A.M., Romano, V.: Non parabolic band transport in semiconductors: closure of the moment equations. Contin. Mech. Thermodyn. 11, 307–325 (1999)MathSciNetCrossRefGoogle Scholar
  3. 8.
    Anile, A.M., Romano, V.: Hydrodynamical modeling of charge carrier transport in semiconductors. Meccanica 35, 249–296 (2000)CrossRefGoogle Scholar
  4. 10.
    Anile, A.M., Junk, M., Romano, V., Russo, G.: Cross-validation of numerical schemes for extended hydrodynamical models of semiconductors. Math. Models Methods Appl. Sci. 10, 833–861 (2000)MathSciNetCrossRefGoogle Scholar
  5. 11.
    Anile, A.M., Muscato, O., Romano, V.: Moment equations with maximum entropy closure for carrier transport in semiconductor devices: validation in bulk silicon. VLSI Des. 10, 335–354 (2000)CrossRefGoogle Scholar
  6. 13.
    Anile, A.M., Romano, V., Russo, G.: Hyperbolic hydrodynamical model of carrier transport in semiconductors. VLSI Des. 8, 521–525 (1998)CrossRefGoogle Scholar
  7. 14.
    Anile, A.M., Mascali, G., Romano, V.: Recent developments in hydrodynamical modeling of semiconductors. In: Mathematical Problems in Semiconductor Physics. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 15-22, 1998, Lecture Notes in Mathematics. Springer, Berlin (2003)zbMATHGoogle Scholar
  8. 15.
    Anile, A.M., Marrocco, A., Romano, V., Sellier, J.M.: 2D numerical simulation of the MEP energy-transport model with a mixed finite elements scheme. J. Comput. Electron. 4, 231–259 (2005)CrossRefGoogle Scholar
  9. 18.
    Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot in silicon. Solid-State Electron. 28, 407–416 (1985)CrossRefGoogle Scholar
  10. 24.
    Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37, 3306–3333 (1996)MathSciNetCrossRefGoogle Scholar
  11. 26.
    Ben Abdallah, N., Degond, P., Genieys, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84, 205–231 (1996)MathSciNetCrossRefGoogle Scholar
  12. 42.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefGoogle Scholar
  13. 51.
    Chen, D., Kan, E.C., Ravaioli, U., Shu, C.-W., Dutton, R.: An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electron Device Lett. 13, 26–28 (1992)CrossRefGoogle Scholar
  14. 69.
    de Groot, S.R., Mazur, P.: Non Equilibrium Thermodynamics. Dover Publications, New York (1985)zbMATHGoogle Scholar
  15. 70.
    Drago, C.R., Romano, V.: Optimal control for semiconductor diode design based on the MEP energy-transport model. J. Comput. Theor. Transp. 46(6–7), 459–479 (2017)MathSciNetCrossRefGoogle Scholar
  16. 74.
    Faure, C., Papegay, Y.: Odyssée user’s guide version 1.7. Technical Report RT-0224 (1998), 81Google Scholar
  17. 76.
    Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48, 2244–2274 (1993)CrossRefGoogle Scholar
  18. 84.
    Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)Google Scholar
  19. 85.
  20. 87.
    Grinber, A.A., Lury, S.: Diffusion in a short base. Solid State Electron. 35(9), 1299–1309 (1992)CrossRefGoogle Scholar
  21. 89.
    Hänsch, W.: The Drift Diffusion Equation and Its Applications in MOSFET Modeling. Springer, Wien (1991)CrossRefGoogle Scholar
  22. 93.
    Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien (1989)CrossRefGoogle Scholar
  23. 97.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)CrossRefGoogle Scholar
  24. 128.
    Lyumkis, E., Polsky, B., Shir, A., Visocky, P.: Transient semiconductor device simulation including energy balance equation. COMPEL Int. J. Comput. Math. Electr. 11, 311–325 (1992)CrossRefGoogle Scholar
  25. 133.
    Majorana, A., Romano, V.: Comparing kinetic and MEP model of charge transport in semiconductors. In: Progress in Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 525–530. Springer, Berlin (2008)CrossRefGoogle Scholar
  26. 136.
    Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)CrossRefGoogle Scholar
  27. 137.
    Marrocco, A., Montarnal, P.: Simulation de modéles “energy transport” á áide des éléments finis mixtes. C. R. Acad. Sci. Paris 232, ser. I, 535 (1996)Google Scholar
  28. 142.
    Mascali, G., Romano, V.: Simulation of Gunn oscillations with a non parabolic hydrodynamical model based on the maximum entropy principle. COMPEL Int. J. Comput. Math. Electr. 24, 35–54 (2005)CrossRefGoogle Scholar
  29. 147.
    Mascali, G., Romano, V., Sellier, J.M.: MEP parabolic hydrodynamical model for holes in silicon semiconductors. Nuovo Cimento B 120, 197–215 (2005)Google Scholar
  30. 149.
    Montarnal, P.: Modèles de transport d’énergie des semi-conducteurs: études asymptotiques et résolution par des éléments finis mixtes. Ph.D. Thesis. Université Paris VI (1997)Google Scholar
  31. 150.
    Morandi, O.: Multiband Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B 80, 024301 (2009)CrossRefGoogle Scholar
  32. 153.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefGoogle Scholar
  33. 155.
    Muscato, O.: Validation of an extended hydrodynamic model for a submicron npn bipolar junction transistor. Phys. A 365, 409–428 (2006)CrossRefGoogle Scholar
  34. 173.
    Romano, V.: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Contin. Mech. Thermodyn. 12, 31–51 (2000)MathSciNetCrossRefGoogle Scholar
  35. 174.
    Romano, V.: Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices. Math. Methods Appl. Sci. 24, 439–471 (2001)MathSciNetCrossRefGoogle Scholar
  36. 184.
    Schenk, A.: Advanced Physical Models for Silicon Device Simulations. Springer, Wien (1998)CrossRefGoogle Scholar
  37. 185.
    Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Wien (1984)CrossRefGoogle Scholar
  38. 190.
    Stracquadanio, G., Romano, V., Nicosia, G.: Semiconductor device design using the BiMADS algorithm. J. Comput. Phys. 242, 304–320 (2013)MathSciNetCrossRefGoogle Scholar
  39. 191.
    Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (1962)CrossRefGoogle Scholar
  40. 194.
    Tomizawa, K.: Numerical Simulation of Submicron Semiconductor Devices. Artech House Publishers, Boston (1993)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vito Dario Camiola
    • 1
  • Giovanni Mascali
    • 2
  • Vittorio Romano
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations