Application of MEP to Charge Transport in Semiconductors

  • Vito Dario Camiola
  • Giovanni Mascali
  • Vittorio Romano
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 31)


MEP can be used for solving the closure problem related to the moment systems associated to the electron transport equations. Here the case of 3D electron gas is considered. Lower dimensional electron gases will be treated in the next chapters.


  1. 1.
    Alì, G., Anile, A.M.: Moment equations for charged particles: global existence results. In: Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology, pp. 59–80 (Birkhäuser, Boston, 2004)Google Scholar
  2. 21.
    Barletti, L.: Hydrodinamic equations for an electron gas in graphene. J. Math. Ind. 6(1), 7 (2016)CrossRefGoogle Scholar
  3. 60.
    Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)MathSciNetCrossRefGoogle Scholar
  4. 66.
    Degond, P., Ringhofer, C.: Quantum moment hydrodynamics and the entropy principle. J. Stat. Phys. 112, 587–628 (2003)MathSciNetCrossRefGoogle Scholar
  5. 68.
    Degond, P., Méhats, F., Ringhofer, C.: Quantum energy-transport and drift-diffusion models. J. Stat. Phys. 118, 625–667 (2005)MathSciNetCrossRefGoogle Scholar
  6. 71.
    Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20, 6505–6517 (1987)CrossRefGoogle Scholar
  7. 72.
    Dreyer, W., Junk, M., Kunik, M.: On the approximation of the Fokker-Planck equation by moment systems. Nonlinearity 14, 881–906 (2001)MathSciNetCrossRefGoogle Scholar
  8. 77.
    Fisher, A., Marsden, D.P.: The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I. Commun. Math. Phys. 28, 1–38 (1972)MathSciNetCrossRefGoogle Scholar
  9. 92.
    Jacoboni, C.: Theory of Electron Transport in Semiconductors. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 96.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  11. 97.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)CrossRefGoogle Scholar
  12. 98.
    Jourdana, C., Pietra, P.: A hybrid classical-quantum transport model for the simulation of carbon nanotube transistors. SIAM J. Sci. Comput. 36(3), B486–B507 (2014)MathSciNetCrossRefGoogle Scholar
  13. 99.
    Jüngel, A.: Transport Equations for Semiconductors. Springer, Berlin (2009)CrossRefGoogle Scholar
  14. 100.
    Jüngel, A.: Dissipative quantum fluid models. Riv. Mat. Univ. Parma 3, 217–290 (2012)MathSciNetzbMATHGoogle Scholar
  15. 102.
    Junk, M.: Domain of definition of Levermore’s five-moment system. J. Stat. Phys. 93, 1143–1167 (1998)MathSciNetCrossRefGoogle Scholar
  16. 103.
    Junk, M.: Maximum entropy for reduced moment problem. Math. Models Methods Appl. Sci. 10, 1001–1025 (2000)MathSciNetCrossRefGoogle Scholar
  17. 104.
    Junk, M.: Moment problems in kinetic theory. Technische Universität Kaiserslautern, Habilitationsschrift (2001)Google Scholar
  18. 105.
    Junk, M., Romano, V.: Maximum entropy moment system of the semiconductor Boltzmann equation using Kane’s dispersion relation. Contin. Mech. Thermodyn. 17, 247–267 (2005)MathSciNetCrossRefGoogle Scholar
  19. 106.
    Junk, M., Unterreiter, A.: Maximum entropy moment systems and Galilean invariance. Contin. Mech. Thermodyn. 14, 563–576 (2002)MathSciNetCrossRefGoogle Scholar
  20. 111.
    La Rosa, S.: Hydrodynamical models for Si semiconductors based on the maximum entropy principle, Ph.D. Thesis. University of Catania (2008)Google Scholar
  21. 117.
    Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021–1065 (1996)MathSciNetCrossRefGoogle Scholar
  22. 119.
    Lewis, A.S.: Consistency of moment systems. Can. J. Math. 47, 995–1006 (1995)MathSciNetCrossRefGoogle Scholar
  23. 153.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefGoogle Scholar
  24. 177.
    Romano, V.: Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle. J. Math. Phys. 48, 123504-1–123504-24 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vito Dario Camiola
    • 1
  • Giovanni Mascali
    • 2
  • Vittorio Romano
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of CataniaCataniaItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations