Advertisement

A General Approach to the Extrinsic Calibration of Intelligent Vehicles Using ROS

  • Miguel Oliveira
  • Afonso CastroEmail author
  • Tiago Madeira
  • Paulo Dias
  • Vitor Santos
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1092)

Abstract

Intelligent vehicles are complex systems which often accommodate several sensors of different modalities. This paper proposes a general approach to the problem of extrinsic calibration of multiple sensors of varied modalities. Our approach is seamlessly integrated with the Robot Operating System (ROS) framework, and allows for the interactive positioning of sensors and labelling of data, facilitating the calibration process. The calibration problem is formulated as a simultaneous optimization for all sensors, in which the objective function accounts for the various sensor modalities. Results show that the proposed procedure produces accurate calibrations.

Keywords

Extrinsic calibration ROS Optimization Bundle adjustment Intelligent vehicles 

Notes

Acknowledgement

This Research Unit is funded by National Funds through the FCT - Foundation for Science and Technology, in the context of the project UID/CEC/00127/2019.

References

  1. 1.
    Agarwal, S., Snavely, N., M. Seitz, S., Szeliski, R.: Bundle adjustment in the large, pp. 29–42, November 2010Google Scholar
  2. 2.
    Almeida, M., Dias, P., Oliveira, M., Santos, V.: 3d-2d laser range finder calibration using a conic based geometry shape. In: Image Analysis and Recognition, pp. 312–319, June 2012Google Scholar
  3. 3.
    Basso, F., Menegatti, E., Pretto, A.: Robust intrinsic and extrinsic calibration of RGB-D cameras. IEEE Trans. Robot. 34(5), 1315–1332 (2018)CrossRefGoogle Scholar
  4. 4.
    Chen, G., Cui, G., Jin, Z., Wu, F., Chen, X.: Accurate intrinsic and extrinsic calibration of RGB-D cameras with GP-based depth correction. IEEE Sens. J. 19(7), 2685–2694 (2019)CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Yang, X., Zhang, C., Jiang, S.: Extrinsic calibration of a laser range finder and a camera based on the automatic detection of line feature. In: 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 448–453, October 2016Google Scholar
  6. 6.
    Gao, D., Duan, J., Yang, X., Zheng, B.: A method of spatial calibration for camera and radar. In: 2010 8th World Congress on Intelligent Control and Automation, pp. 6211–6215, July 2010Google Scholar
  7. 7.
    Dinh, V.Q., Nguyen, T.P., Jeon, J.W.: Rectification using different types of cameras attached to a vehicle. IEEE Trans. Image Process. 28(2), 815–826 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Foote, T.: TF: the transform library. In: 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA), pp. 1–6, April 2013Google Scholar
  9. 9.
    Guindel, C., Beltrán, J., Martín, D., García, F.: Automatic extrinsic calibration for lidar-stereo vehicle sensor setups. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017)Google Scholar
  10. 10.
    Hornegger, J., Tomasi, C.: Representation issues in the ML estimation of camera motion, vol. 1, pp. 640–647, February 1999Google Scholar
  11. 11.
    Häselich, M., Bing, R., Paulus, D.: Calibration of multiple cameras to a 3D laser range finder. In: 2012 IEEE International Conference on Emerging Signal Processing Applications, pp. 25–28, January 2012Google Scholar
  12. 12.
    Khan, A., Aragon-Camarasa, G., Sun, L., Siebert, J.P.: On the calibration of active binocular and RGBD vision systems for dual-arm robots. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1960–1965, December 2016Google Scholar
  13. 13.
    Kwon, Y.C., Jang, J.W., Choi, O.: Automatic sphere detection for extrinsic calibration of multiple RGBD cameras. In: 2018 18th International Conference on Control, Automation and Systems (ICCAS), pp. 1451–1454, October 2018Google Scholar
  14. 14.
    Lee, G., Lee, J., Park, S.: Calibration of VLP-16 lidar and multi-view cameras using a ball for 360 degree 3D color map acquisition. In: 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 64–69, November 2017Google Scholar
  15. 15.
    Liao, Y., Li, G., Ju, Z., Liu, H., Jiang, D.: Joint kinect and multiple external cameras simultaneous calibration. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 305–310, August 2017Google Scholar
  16. 16.
    Ling, Y., Shen, S.: High-precision online markerless stereo extrinsic calibration. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1771–1778, October 2016Google Scholar
  17. 17.
    Mueller, G.R., Wuensche, H.: Continuous stereo camera calibration in urban scenarios. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6, October 2017Google Scholar
  18. 18.
    Pereira, M., Silva, D., Santos, V., Dias, P.: Self calibration of multiple lidars and cameras on autonomous vehicles. Robot. Auton. Syst. 83, 326–337 (2016)CrossRefGoogle Scholar
  19. 19.
    Pradeep, V., Konolige, K., Berger, E.: Calibrating a Multi-arm Multi-sensor Robot: A Bundle Adjustment Approach, pp. 211–225. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Qiao, Y., Tang, B., Wang, Y., Peng, L.: A new approach to self-calibration of hand-eye vision systems. In: 2013 International Conference on Computational Problem-Solving (ICCP), pp. 253–256, October 2013Google Scholar
  21. 21.
    Zhang, Q., Pless, R.: Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2301–2306, September 2004Google Scholar
  22. 22.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  23. 23.
    Rehder, J., Siegwart, R., Furgale, P.: A general approach to spatiotemporal calibration in multisensor systems. IEEE Trans. Robot. 32(2), 383–398 (2016)CrossRefGoogle Scholar
  24. 24.
    Su, R., Zhong, J., Li, Q., Qi, S., Zhang, H., Wang, T.: An automatic calibration system for binocular stereo imaging. In: 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 896–900, October 2016Google Scholar
  25. 25.
    Santos, V., Almeida, J., Ávila, E., Gameiro, D., Oliveira, M., Pascoal, R., Sabino, R., Stein, P.: Atlascar - technologies for a computer assisted driving system, on board a common automobile. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1421–1427, September 2010Google Scholar
  26. 26.
    Vasconcelos, F., Barreto, J.P., Nunes, U.: A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2097–2107 (2012)CrossRefGoogle Scholar
  27. 27.
    Wu, L., Zhu, B.: Binocular stereovision camera calibration. In: 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 2638–2642, August 2015Google Scholar
  28. 28.
    Zhang, C., Zhang, Z.: Calibration between depth and color sensors for commodity depth cameras. In: 2011 IEEE International Conference on Multimedia and Expo, pp. 1–6, July 2011Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Miguel Oliveira
    • 1
    • 2
  • Afonso Castro
    • 1
    Email author
  • Tiago Madeira
    • 1
  • Paulo Dias
    • 1
    • 2
  • Vitor Santos
    • 1
    • 2
  1. 1.University of AveiroAveiroPortugal
  2. 2.Institute of Electronics and Telematics Engineering of AveiroAveiroPortugal

Personalised recommendations