Application of Nanotechnology for Integrated Plant Disease Management

  • Imran Ul Haq
  • Siddra Ijaz
  • Nabeeha Aslam Khan
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)


Nanotechnology is an innovative and emerging discipline in the field of science and technology. With its broad application, it is now becoming a key part of life sciences, including approaches to target phytopathogens for disease management. Agrochemicals application against phytopathogens is not sustainable any more because of insufficient bioavailability of active and low-impact compounds. Hence, the nature of nanoparticles (NPs), nanoemulsions and nanoformulations make them efficient nanopesticides to target in a very efficient way, showing higher solubility, permeability and stability.This chapter will provide details on this technology as integrated in plant disease management.Antimicrobial action, potential and application of NPs and NPs-based nanopesticides for managing the plant diseases are described.


Nanobiotechnology Metallic nanoparticles Nanoparticles Nanobarcodes Nanofungicides 


  1. Abd-Elsalam, K. A., & Prasad, R. (2018). Nanobiotechnology applications in plant protection. Dordrecht: Springer. Scholar
  2. Agrawal, S., & Rathore, P. (2014). Nanotechnology pros and cons to agriculture: A review. International Journal of Current Microbiology and Applied Sciences, 3(3), 43–55.Google Scholar
  3. Agrios, G. N. (2005). Plant pathology (922 pp 5th edn.). Burlington: Elsevier Academic Press.Google Scholar
  4. Alghuthaymi, M. A., Almoammar, H., Rai, M., Said-Galiev, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 29, 221–236.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aziz, N., Pandey, R., Barman, I., & Prasad, R. (2016). Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Frontiers in Microbiology, 7, 1984. Scholar
  6. Barrak, H., Saied, T., Chevallier, P., Laroche, G., M’nif, A., & Hamzaoui, A. H. (2016). Synthesis, characterization, and functionalization of ZnO nanoparticles by N-(trimethoxysilylpropyl) ethylenediamine triacetic acid (TMSEDTA): Investigation of the interactions between Phloroglucinol and ZnO@ TMSEDTA. Arabian Journal of Chemistry, 1–8. Scholar
  7. Bergeson, L. L. (2010). Nanosilver pesticide products: What does the future hold? Environmental Quality Management, 19, 73–82.CrossRefGoogle Scholar
  8. Bernardes, P. C., Nélio, J. D. A., & Nilda de Fátima, F. S. (2014). Nanotechnology in the food industry. Bioscience Journal, 30, 1919–1932.Google Scholar
  9. Bhagat, D., Samanta, S. K., & Bhattacharya, S. (2013). Efficient management of fruit pests by pheromone nanogels. Scientific Reports, 3, 1294.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bhan, S., Lalit, M., & Srivastava, C. N. (2014). Relative larvicidal potentiality of nano-encapsulated temephos and imidacloprid against Culex quinquefasciatus. Journal of Asia-Pacific Entomology, 17, 787–791.CrossRefGoogle Scholar
  11. Bhattacharyya, A., Bhaumik, A., Rani, P. U., Mandal, S., & Epidi, T. T. (2010). Nanoparticles A recent approach to insect pest control. African Journal of Biotechnology, 9, 3489–3493.Google Scholar
  12. Bonde, S. R., Rathod, D. P., Ingle, A. P., Ade, R. B., Gade, A. K., & Rai, M. K. (2012). Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanoscience Methods, 1, 25–36.CrossRefGoogle Scholar
  13. Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34, 125–155.CrossRefGoogle Scholar
  14. Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12, 2163–2175.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Branton, D., Deamer, D. W., Marziali, A., & el al, B. H. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146–1153.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brecht, M., Datnoff, L., Nagata, R., & Kucharek, T. (2003). The role of silicon in suppressing tray leaf spot development in St. Augustine grass (pp. 1–4). Gainesville: Publication in University of Florida.Google Scholar
  17. Brecht, M. O., Datnoff, L. E., Kucharek, T. A., & Nagata, R. T. (2004). Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustine grass. Plant Disease, 88(4), 338–344.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Brunel, F., El Gueddari, N. E., & Moerschbacher, B. M. (2013). Complexation of copper (II) with chitosan nanogels: Toward control of microbial growth. Carbohydrate Polymers, 92, 1348–1356.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Campos, E. V. R., De Oliveira, J. L., Da Silva, C. M. G., Pascoli, M., Pasquoto, T., Lima, R., & Fraceto, L. F. (2015). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Scientific Reports, 5, 13809.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen, H., & Yada, R. (2011). Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology, 22, 585–594.CrossRefGoogle Scholar
  21. Chen, L., Song, Y., Tang, B., Song, X., Yang, H., Li, B., et al. (2015). Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach. Ecotoxicology and Environmental Safety, 120, 418–427. Scholar
  22. Chowdappa, P., Kumar, N. B., Madhura, S., Kumar, M. S., Myers, K. L., Fry, W. E., & Cooke, D. E. (2013). Emergence of 13_ A 2 blue lineage of Phytophthora infestans was responsible for severe outbreaks of late blight on tomato in south-west India. Journal of Phytopathology, 161, 49–58.CrossRefGoogle Scholar
  23. Chuan, L., He, P., Pampolino, M. F., Johnston, A. M., Jin, J., Xu, X., & Zhou, W. (2013). Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Research, 140, 1–8.CrossRefGoogle Scholar
  24. Clement, J. L., & Jarrett, P. S. (1994). Antibacterial silver. Metal-Based Drugs, 1, 467–482.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cursino, L., Li, Y., Zaini, P. A., De La Fuente, L., Hoch, H. C., & Burr, T. J. (2009). Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microbiology Letters, 299, 193–199.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dubchak, S., Ogar, A., Mietelski, J. W., & Turnau, K. (2010). Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 1, 103–108.CrossRefGoogle Scholar
  27. Dubey, M., Bhadauria, S., & Kushwah, B. S. (2009). Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Digest Journal of Nanomaterials and Biostructures, 4, 537–543.Google Scholar
  28. Duebendorf, St. G. T. (2008). How do nanoparticles behave in the environment? NanoEco-Empa organized international meeting on nanoparticles in the environment. In B. Nowack and N. Mueller (Eds.), Environmental Science and Technology,
  29. Dzhavakhiya, V., Shcherbakova, L., Semina, Y., Zhemchuzhina, N., & Campbell, B. (2012). Chemosensitization of plant pathogenic fungi to agricultural fungicides. Frontiers in Microbiology, 3, 1–9.CrossRefGoogle Scholar
  30. Esteban Tejeda, L., Malpartida, F., Esteban Cubillo, A., Pecharroman, C., & Moya, J. S. (2009). Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology, 20, 505701.PubMedCrossRefGoogle Scholar
  31. Gan, P. P., Ng, S. H., Huang, Y., & Li, S. F. Y. (2012). Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach. Bioresource Technology, 113, 132–135.PubMedCrossRefGoogle Scholar
  32. Gha-Young, K., Joonmok, S., Min-Su, K., & Seung-Hyeon, M. (2008). Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. Journal of Environmental Monitoring, 10, 632–637.CrossRefGoogle Scholar
  33. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29, 792–803.PubMedCrossRefGoogle Scholar
  34. Gogoi, R., Dureja, P., & Singh, P. K. (2009). Nanoformulations – A safer and effective option for agrochemicals. Indian Farming, 59, 7–12.Google Scholar
  35. González-Fernández, R., Prats, E., Jorrín-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine & Biotechnology, 2010, art. n. 932527.Google Scholar
  36. Gruère, G. P. (2012). Implications of nanotechnology growth in food and agriculture in OECD countries. Food Policy, 37, 191–198.CrossRefGoogle Scholar
  37. Gupta, K., Singh, R. P., Pandey, A., & Pandey, A. (2013). Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein Journal of Nanotechnology, 4, 345.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hettiarachchi, M. A., & Wickramarachchi, P. A. S. R. (2011). Synthesis of chitosan stabilized silver nanoparticles using gamma ray irradiation and characterization. Journal of Science, 6, 65–75.Google Scholar
  39. Ingham, B. (2015). X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 21, 229–303.CrossRefGoogle Scholar
  40. Ismail, M., Prasad, R., Ibrahim, A. I. M., & Ahmed, I. S. A. (2017). Modern prospects of nanotechnology in plant pathology. In R. Prasad, M. Kumar, & V. Kumar (Eds.), Nanotechnology (pp. 305–317). Singapore: Springer Nature.CrossRefGoogle Scholar
  41. Jo, Y. K., Kim, B. H., & Jung, G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93, 1037–1043.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12, 407–409.CrossRefGoogle Scholar
  43. Johnston, C. T. (2010). Probing the nanoscale architecture of clay minerals. Clay Minerals, 45(3), 245–279.CrossRefGoogle Scholar
  44. Kah, M., & Hofmann, T. (2014). Nanopesticide research: Current trends and future priorities. Environment International, 63, 224–235.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kanto, T., Miyoshi, A., Ogawa, T., Maekawa, K., & Aino, M. (2004). Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. Journal of General Plant Pathology, 70, 207–211.CrossRefGoogle Scholar
  46. Khan, M. R., & Rizvi, T. F. (2014). Nanotechnology: Scope and application in plant disease management. Plant Pathology Journal, 13, 214–231.CrossRefGoogle Scholar
  47. Khan, I., Yamani, Z. H., & Qurashi, A. (2017). Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrasonics Sonochemistry, 34, 484–490.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kim, Y. H., Lee, D. K., Cha, H. G., Kim, C. W., Kang, Y. C., & Kang, Y. S. (2006). Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. The Journal of Physical Chemistry B, 110, 24923–24928.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.CrossRefGoogle Scholar
  50. Kumar, R. R., Priyadharsani, K. P., & Thamaraiselvi, K. (2012). Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. Journal of Nanoparticle Research, 14, 860.CrossRefGoogle Scholar
  51. Lauterwasser, C. (2006). Small sizes that matter: Opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme. Munchen: Allianz Center for Technology. 45 pp.Google Scholar
  52. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews. Microbiology, 11, 371.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lhomme, L., Brosillon, S., & Wolbert, D. (2008). Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere, 70, 381–386.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Li, L. S., Hu, J., Yang, W., & Alivisatos, A. P. (2001). Band gap variation of size-and shape-controlled colloidal CdSe quantum rods. Nano Letters, 1, 349–351.CrossRefGoogle Scholar
  55. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858.CrossRefGoogle Scholar
  56. Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A. R., Agüera, A., & Rodrıguez, A. (2002). Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 76, 209–220.CrossRefGoogle Scholar
  57. Manczinger, L., Antal, Z., & Kredics, L. (2002). Ecophysiology and breeding of mycoparasitic Trichoderma strains. Acta Microbiologica et Immunologica Hungarica, 49, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mathew, A. P., Laborie, M. P., & Oksman, K. (2009). Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules, 10, 1627–1632.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Medici, S., Peana, M., Nurchi, V. M., Lachowicz, J. I., Crisponi, G., & Zoroddu, M. A. (2015). Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, 284, 329–350.CrossRefGoogle Scholar
  60. Melemeni, M., Stamatakis, D., Xekoukoulotakis, N. P., Mantzavinos, D., & Kalogerakis, N. (2009). Disinfection of municipal wastewater by TiO2 phtocatalysis with UV-A, visible and solar irradiation and BDD electrolysis. Global NEST Journal, 11, 357–363.Google Scholar
  61. Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., & Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathology Journal, 25, 376–380.CrossRefGoogle Scholar
  62. Mishra, S., & Singh, H. B. (2015). Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Applied Microbiology and Biotechnology, 99, 1097–1107.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Murphy, K. (Ed.) (2008). Nanotechnology: Agriculture’s Next“Industrial” Revolution (Williston, VT: Financial Partner, Yankee Farm Credit, ACA). Spring, pp 3–5.Google Scholar
  65. Nayak, R., Pradhan, N., Behera, D., Pradhan, K., Mishra, S., Sukla, L., & Mishra, B. (2011). Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: The process and optimization. Journal of Nanoparticle Research, 13, 3129–3137.CrossRefGoogle Scholar
  66. Nel, A., Xia, T., Madler, L., & Li, N. (2003). Toxic potential of materials at the nano level. Science, 311, 622–627.CrossRefGoogle Scholar
  67. Nowack, B. (2009). Is anything out there? What life cycle perspectives of nano-products can tell us about nanoparticles in the environment. Nano Today, 4, 11–12.CrossRefGoogle Scholar
  68. Oliveira, M. M., Ugarte, D., Zanchet, D., & Zarbin, A. J. (2005). Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. Journal of Colloid and Interface Science, 292, 429–435.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., & Pal, T. (2004). General method of synthesis for metal nanoparticles. Journal of Nanoparticle Research, 6, 411–414.CrossRefGoogle Scholar
  70. Park, H. J., Kim, S. H., Kim, H. J., & Choi, S. H. (2006). A new composition of nanosized silica-silver for control of various plant diseases. The Plant Pathology Journal, 22, 295–302.CrossRefGoogle Scholar
  71. Patra, P., Mitra, S., Debnath, N., & Goswami, A. (2012). Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir, 28, 16966–16978.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2, 32.CrossRefGoogle Scholar
  73. Rai, M., & Ingle, A. (2012). Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94, 287–293.PubMedCrossRefGoogle Scholar
  74. Rai, M., & Yadav, A. (2013). Plants as potential synthesiser of precious metal nanoparticles: Progress and prospects. IET Nanobiotechnology, 7, 117–124.PubMedCrossRefGoogle Scholar
  75. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.PubMedCrossRefGoogle Scholar
  76. Retchkiman-Schabes, P. S., Canizal, G., Becerra-Herrera, C. R., Zorrilla, H. B., & Liu, J. A. (2006). Ascencio biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials, 29, 95–99.CrossRefGoogle Scholar
  77. Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycete. Current Science, 85, 162–170.Google Scholar
  78. Satalkar, P., Elger, B. S., & Shaw, D. M. (2016). Defining nano, nanotechnology and nanomedicine: Why should it matter? Science and Engineering Ethics, 22, 1255–1276.PubMedCrossRefGoogle Scholar
  79. Schaller, M., Laude, J., Bodewaldt, H., Hamm, G., & Korting, H. C. (2004). Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin Pharmacology and Physiology, 17, 31–36.PubMedCrossRefGoogle Scholar
  80. Scott, N, Chen, H. (2003). Nanoscale science and engineering for agriculture and food systems. USDA National Planning Workshop (November 18–19, 2002), Washington, DC, 63 pp.Google Scholar
  81. Sharma, K., Sharma, R., Shit, S., Gupata, S. (2012). Nanotechnological application on diagnosis of a plant disease. Int. Conf. on Advances in Biological and Medical Sciences, 1–2.Google Scholar
  82. Sharon, M., Choudhary, A. K., & Kumar, R. (2010). Nanotechnology in agricultural diseases and food safety. Journal of Phytolpathology, 2, 83–92.Google Scholar
  83. Shin, W. K., Cho, J., Kannan, A. G., Lee, Y. S., & Kim, D. W. (2016). Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Scientific Reports, 6, 26332.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sofi, W., Gowri, M., Shruthilaya, M., Rayala, S., & Venkatraman, G. (2012). Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infectious Diseases, 12, 60.CrossRefGoogle Scholar
  85. Sotthivirat, S., Lubach, J. W., Haslam, J. L., Munson, E. J., & Stella, V. J. (2007). Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy. Jounal of Pharmaceutical Science, 96(5), 1008–1017.CrossRefGoogle Scholar
  86. Thomas, S., & McCubbin, P. (2003). A comparison of the antimicrobial effects of four silver-containing dressings on three organisms. Journal of Wound Care, 12, 101–107.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Tournas, V. H. (2005). Spoilage of vegetable crops by bacteria and fungi and related health hazards. Critical Reviews in Microbiology, 31, 33–44.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ullah, A. R., Joyce, H. J., Tan, H. H., Jagadish, C., & Micolich, A. P. (2017). The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology, 28, 454001.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Vu, H. T., Keough, M. J., Long, S. M., & Pettigrove, V. J. (2015). Effects of the boscalid fungicide Filan® on the marine amphipod Allorchestes compressa at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 35, 1130–1137.CrossRefGoogle Scholar
  91. Wang, L., Li, X., Zhang, G., Dong, J., & Eastoe, J. (2007). Oil-in-water nanoemulsions for pesticide formulations. Journal of Colloid and Interface Science, 314, 230–235.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Wang, S., Lawson, R., Ray, P. C., & Yu, H. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27, 547–554.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wei, D., Sun, W., Qian, W., Ye, Y., & Ma, X. (2009). The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydrate Research, 344, 2375–2382.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Woo, K. S., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Mooyoung, J., et al. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and Biotechnology, 19, 760–764.Google Scholar
  95. Xie, Y., He, Y., Irwin, P. L., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and Environmental Microbiology, 77, 2325–2331.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Yan, J., Huang, K., Wang, Y., & Liu, S. (2005). Study on anti-pollution nano-preparation of dimethomorph and its performance. Chinese Science Bulletin, 50, 108–112.CrossRefGoogle Scholar
  97. Ying, J. Y. (2009). Nanobiomaterials. Nano Today, 4, 1–2.CrossRefGoogle Scholar
  98. Zaini, P. A., De La Fuente, L., Hoch, H. C., & Burr, T. J. (2009). Grapevine xylem sap enhances biofilm development by Xylella fastidiosa. FEMS Microbiology Letters, 295, 129–134.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Zeng, H., Li, X. F., Zhang, G. Y., & Dong, J. F. (2008). Preparation and characterization of beta cypermethrin nanosuspensions by diluting O/W microemulsions. Journal of Dispersion Science and Technology, 29, 358–361.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Imran Ul Haq
    • 1
  • Siddra Ijaz
    • 2
  • Nabeeha Aslam Khan
    • 1
  1. 1.Department of Plant PathologyUniversity of Agriculture FaisalabadFaisalabadPakistan
  2. 2.Centre of Agricultural Biochemistry and Biotechnology (CABB)University of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations