Advertisement

Biological Antagonism: A Safe and Sustainable Way to Manage Plant Diseases

  • Yasir Iftikhar
  • Ashara Sajid
  • Qaiser ShakeelEmail author
  • Zohaib Ahmad
  • Zia Ul Haq
Chapter
  • 35 Downloads
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)

Abstract

Biological control is a viable alternatives to the use of synthetic chemicals for plant pathogens management,., based on application of microbial antagonists as biological control agents (BCA). Plant health is significantly affected in many ways by a wide variety of pathogens. Cross protection, predation, hyperparasitism, induced resistance, antibiosis and competition are different mechanisms used by BCA. Knowledge is required for successful application of biocontrol in intensive management approaches. BCA can be applied at the site of infection directly or in each crop year, at sites in which they will multiply and spread to other field parts. To keep pathogen populations below economic threshold levels, occasional or one time applications can be adopted. However, due to different environmental conditions, biological control has not always produced encouraging results. To improve the BCA performance in the field, work on formulations is needed. For marketing, strains with better adaptability and field survival should be prospected. Most of biological control work has been centered on management of soil borne or seed borne pathogens. Most of the products containing BCA are applied as seed treatments for protecting major crops such as wheat, rice, sugar beet, corn and cotton. BCA are also used in foliar sprays to manage downy and powdery mildew, leaf spot and blight. Antagonistic microorganisms have also been used against few post-harvest pathogens. In spite of all significant improvements, this area still needs due consideration for developing more reliable and stable formulations, especially when for field applications. In this view, more research is required on innovative formulations by exploring novel microorganisms, using nano- and biotechnologies for their improvement, studying the impact of environmental conditions and the mass production of BCA. With a growing of biocontrol demand by growers, the future outlook of biocontrol is bright. By improving biocontrol research it is possible to completely replace chemical pesticides by BCA, improving yields, protection technologies and the environment, leading to a more sustainable agriculture.

Keywords

Hyperparasitism Biological antagonism Entomopathogenic Mycoparasitism Obligate parasite 

References

  1. Aatif, H. M., Javed, N., Khan, S. A., Ahmed, S., & Raheel. (2015). Virulence of entomopathogenic nematodes against Meloidogyne incognita for invasion, development and reproduction at different application times in brinjal roots. International Journal of Agriculture and Biology, 17, 995–1000.CrossRefGoogle Scholar
  2. Abdelbasset, E. H., Adam, L. R., Hadrami, I. E., & Daayf. (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.CrossRefGoogle Scholar
  3. Agrios, N. A. (1988). Plant pathology (3rd ed., pp. 220–222). Cambridge, MA: Academic Press.Google Scholar
  4. Anderson, A. J., Habibzadegah-Tari, P., & Tepper, C. S. (1988). Genetic studies on the role of an agglutinin-in root colonization by Pseudomonas putida. Applied and Environmental Microbiology, 54, 375–380.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderson, L. M., Stockwell, V. O., & Loper, J. E. (2004). An extracellular protease of Pseudomonas fluorescens inactivates antibiotics of Pantoea agglomerans. Phytopathology, 94, 1228–1234.PubMedCrossRefGoogle Scholar
  6. Audenaert, K., Pattery, T., Cornelis, P., & Hofte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin and pyocyanin. MPMI, 15, 1147–1156.PubMedCrossRefGoogle Scholar
  7. Baker, K. F. (1987). Evolving concepts of biological control of plant pathogens. Annual Review of Phytopathology, 25, 67–85.CrossRefGoogle Scholar
  8. Bankhead, S. B., Landa, B. B., Lutton, E., Weller, D. M., & Gardener, B. B. (2004). Minimal changes in rhizosphere population structure following root colonization by wild type and transgenic biocontrol strains. FEMS Microbiology Ecology, 49, 307–318.PubMedCrossRefGoogle Scholar
  9. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phylosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61, 289–298.CrossRefGoogle Scholar
  10. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 30, 342–350.CrossRefGoogle Scholar
  11. Benhamou, N. (2004). Potential of the mycoparasite, Verticillium lecanii, to protect citrus fruit-against Penicillium digitatum, the causal agent of green mold: A comparison with-the effect of chitosan. Phytopathology, 94, 693–705.PubMedCrossRefGoogle Scholar
  12. Benhamou, N., & Chet, I. (1997). Cellular and molecular mechanisms involved in the interaction between Trichoderma harzianum and Pythium ultimum. Applied and Environmental Microbiology, 63, 2095–2099.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.PubMedCrossRefGoogle Scholar
  14. Biermann, B., & Linderman, R. G. (1983). Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. The New Phytologist, 95, 97–105.CrossRefGoogle Scholar
  15. Bilgrami, A. L. (2008). Biological control potentials of predatory nematodes. In A. Ciancio & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematodes (pp. 3–28). Dordrecht: Springer.CrossRefGoogle Scholar
  16. Bos, L. (1992). New plant virus problems in developing countries: A corollary of agricultural modernisation. Advances in Virus Research, 38, 349–407.CrossRefGoogle Scholar
  17. Buddenhagen, I. W. (1977). Resistance the vulnerability of tropical crops in relation to their evolution and breeding. Annals of the New York Academy of Sciences, 287, 309–326.CrossRefGoogle Scholar
  18. Bull, C. T., Shetty, K. G., & Subbarao, K. V. (2002). Interactions between Myxobacteria, plant pathogenic fungi and biocontrol agents. Plant Disease, 86, 889–896.PubMedCrossRefGoogle Scholar
  19. Cayrol, J. C. (1983). Biological control of Meloidogyne by Anthrobotrys irregularis. Revue de Nematologie, 6, 265–273.Google Scholar
  20. Chen, Z. X., & Dickson, D. W. (1998). Review of Pasteuria penetrans: Biology, ecology and biological control potential. Journal of Nematology, 30, 313–340.PubMedPubMedCentralGoogle Scholar
  21. Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ciancio, A., & Quénéhervé, P. (2000). Population dynamics of Meloidogyne incognita and infestation levels by Pasteuria penetrans in a naturally infested field in Martinique. Nematropica, 30, 77–86.Google Scholar
  23. Cook, R. J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53–80.PubMedCrossRefGoogle Scholar
  24. De Capdeville, G., Wilson, C. L., Aist, B. S. V., & J.R. (2002). Alternative disease control agents induce resistance to blue mold in harvested Red Delicious apple fruit. Phytopathology, 92, 900–908.PubMedCrossRefGoogle Scholar
  25. De Meyer, G., & Hofte, M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinera on bean. Phytopathology, 87, 588–593.PubMedCrossRefGoogle Scholar
  26. Devi, G., & George, J. (2018). Predatory nematodes as bio-control agents against plant parasitic nematodes: A review. Agricultural Reviews, 39, 55–61.Google Scholar
  27. Duchesne, L. C. (1994). Role of ectomycorrhizal fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health (pp. 27–45). Paul: APS Press.Google Scholar
  28. Elad, Y., & Baker, R. (1985). Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology, 75, 1047–1052.CrossRefGoogle Scholar
  29. El-Dougdoug, K. A., Ghaly, M. F., & Taha, M. A. (2012). Biological control of cucumber mosaic virus by certain local Streptomyces isolates: inhibitory effects of selected five Egyptian isolates. International Journal of Virology, 8, 151–164.  https://doi.org/10.3923/ijv.2012.151.164.CrossRefGoogle Scholar
  30. El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A., Wisniewski, M., & Wilson, C. L. (2000). Application of Candida saitoana and glycolchitosan for the control of post harvest diseases of apple and citrus fruit under semi-commercial conditions. Plant disease, 84, 243–248.PubMedCrossRefGoogle Scholar
  31. Fitter, A. H., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–132.CrossRefGoogle Scholar
  32. Gafni, Y. (2003). Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Molecular Plant Pathology, 4(1), 9–15.PubMedCrossRefGoogle Scholar
  33. Garcia-Garrido, J. M., & Ocampo, J. A. (1989). Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biology and Biochemistry, 21, 165–167.CrossRefGoogle Scholar
  34. Giné, A., Carrasquilla, M., Martínez-Alonso, M., Gaju, N., & Sorribas, F. J. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science, 7, 164.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91, 621–627.PubMedCrossRefGoogle Scholar
  36. Haas, D., & Keel, C. (2003). Regulation of antibiotic production in rootcolonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153.PubMedCrossRefGoogle Scholar
  37. Harish, S. (2005). Molecular biology and diagnosis of Banana bunchy top virus and its management through induced systemic resistance. Ph.D. Thesis. Coimbatore: Tamil Nadu agricultural University.Google Scholar
  38. Harrison, B. D., Swanson, M. M., McGrath, P. F., & Fargette, D. (1991). Patterns of antigenic variation in whitefly-transmitted geminiviruses. Report of the Scottish Crop Research Institute for 1990, pp. 88–90.Google Scholar
  39. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2, 43–56.PubMedCrossRefGoogle Scholar
  40. Heydari, A. (2007). Biological control of turfgrass fungal diseases. In M. Pessaraki (Ed.), Turfgress management and physiology. Boca Raton: CRC press.Google Scholar
  41. Heydari, A., & Misaghi, I. J. (1998). Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils. Plant and Soil, 202, 109–116.CrossRefGoogle Scholar
  42. Heydari, A., & Misaghi, I. J. (1999). Herbicide-mediated changes in the populations and activity of root associated microorganisms: A potential cause of plant stress. In M. Pessarakli (Ed.), Handbook of plant and crop stress (2nd ed.). New York: Marcel Dekker Press.Google Scholar
  43. Heydari, A., & Misaghi, I. J. (2003). The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant and Soil, 257, 391–396.CrossRefGoogle Scholar
  44. Heydari, A., Misaghi, I. J., & McCloskey, W. B. (1997). Effects of three soil-applied herbicides on populations of plant disease suppressing bacteria in the cotton rhizosphere. Plant and Soil, 195, 75–81.CrossRefGoogle Scholar
  45. Heydari, A., Fattahi, H., Zamanizadeh, H. R., Zadeh, N. H., & Naraghi, L. (2004). Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in greenhouse. Applied Entomology and Phytopathology, 72, 51–68.Google Scholar
  46. Hoitink, H. A. J., & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446.PubMedCrossRefGoogle Scholar
  47. Homma, Y., Sato, Z., Hirayama, F., Konno, K., Shirahama, H., & Suzui, T. (1989). Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biology and Biochemistry, 21(5), 723–728.CrossRefGoogle Scholar
  48. Howell, C. R., & Stipanovic, R. D. (1980). Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70, 712–715.CrossRefGoogle Scholar
  49. Howell, C. R., Beier, R. C., & Stipanovic, R. D. (1988). Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium pre-emergence damping-off by the bacterium. Phytopathology, 78, 1075–1078.CrossRefGoogle Scholar
  50. Hu, K., Li, J., & Webster, J. M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathohenic nematodes. Nematology, 1, 457–469.  https://doi.org/10.1094/PHI-A-2006-1117-02.CrossRefGoogle Scholar
  51. Islam, M. T., Hashidoko, Y., Deora, A., Ito, T., & Tahara, S. (2005). Suppression of damping-off-disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is-linked to plant colonization and antibiosis against soilborne peronosporomycetes. Applied and Environmental Microbiology, 71, 3786–3796.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jacobsen, B. J., Zidack, N. K., & Larson, B. J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94, 1272–1275.PubMedCrossRefGoogle Scholar
  53. Janisiewicz, W. J., & Peterson, D. L. (2004). Susceptibility of the stem pull area of mechanically harvested apples to blue mold decay and its control with a biocontrol agent. Plant and Disease, 88, 662–664.CrossRefGoogle Scholar
  54. Jeger, M. J., Jeffries, P., Elad, Y., & Xu, X. (2009). A generic theoretical model for biological control of foliar plant diseases. Journal of Theoretical Biology, 256, 201–214.PubMedCrossRefGoogle Scholar
  55. Jones, R. A. C. (2006). Control of plant virus diseases. Advances in Virus Research, 67, 205–244.PubMedCrossRefGoogle Scholar
  56. Kandan, A., Ramiah, M., Vasanthi, V., Radjacommare, R., Nandakumar, R., Ramanathan, A., & Samiyappan, R. (2005). Use of Pseudomonas fluorescens-based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Science and Technology, 15, 553–569.CrossRefGoogle Scholar
  57. Kandan, A., Ramiah, M., Vasanthi, V. J., Radjacommare, R., Nandakumar, R., Ramanathan, A., & Samiyappan, R. (2007). Use of -based formulations for management of tomato spotted wilt virus (TSWV) and enhanced yield in tomato. Biocontrol Science and Technology, 15(6), 553–569.CrossRefGoogle Scholar
  58. Kavino, M., Harish, S., Kumar, N., Saravanakumar, D., & Samiyappan, R. (2008). Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. European Journal of Plant Pathology, 120(4), 353–362.CrossRefGoogle Scholar
  59. Katska, V. (1994). Interrelationship between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum, 36, 99–104.CrossRefGoogle Scholar
  60. Keel, C., Voisard, C., Berling, C. H., Kahir, G., & Defago, G. (1989). Iron sufficiency is a prerequisit for suppression of tobacco black root rot by Pseudomonas fluorescnes strain CHA0 under gnotobiotic contiditions. Phytopathology, 79, 584–589.CrossRefGoogle Scholar
  61. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.PubMedCrossRefGoogle Scholar
  62. Kessel, G. J. T., Kohl, J., Powell, J. A., Rabbinge, R., & van der Werf, W. (2005). Modeling spatial characteristics in the biological control of fungi at the leaf scale: Competitive substrate colonization by Botrytis cinerea and the saprophytic antagonist Ulocladium atrum. Phytopathology, 95, 439–448.PubMedCrossRefGoogle Scholar
  63. Kirankumar, R., Jagadeesh, K. S., Krishnaraj, P. U., & Patil, M. S. (2008). Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21, 309–311.Google Scholar
  64. Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: A mechanism explaining disease suppression in soils. Current Microbiology, 4, 317–320.CrossRefGoogle Scholar
  65. Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.CrossRefGoogle Scholar
  66. Kokalis-Burelle, N. (2015). Pasteuria penetrans for control of Meloidogyne incognita on tomato and cucumber, and M. arenaria on Snapdragon. Journal of Nematology, 47, 207–213.PubMedPubMedCentralGoogle Scholar
  67. Lafontaine, P. J., & Benhamou, N. (1996). Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f.sp. radicis-lycopersici. Biocontrol Science and Technology, 6, 111–124.CrossRefGoogle Scholar
  68. Leclère, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., et al. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leeman, M., van Pelt, J. A., den Ouden, F. M., Heinsbroek, M., Schippers, B. P. A. H. M., & B. (1995). Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using novel bioassay. European Journal of Plant Pathology, 101, 655–664.CrossRefGoogle Scholar
  70. Leyns, F., Borgoni, G., Arnaut, G., & De Waele, D. (1995). Nematicidal activity of Bacillus thuringiensis isolates. Fundamental & Applied Nematology, 18, 211–218.Google Scholar
  71. Linderman, R. G. (1994). Role of VAM fungi in biocontrol. In F. L. Pfleger & R. G. Linderman (Eds.), Mycorrhizae and plant health. St. Paul: APS Press. ISBN-10: 0890541582.Google Scholar
  72. Lo, C. T., Nelson, E. B., & Harman, G. E. (1997). Biological control of Pythium, Rhizoctonia and Sclerotinia infected diseases of turfgrass with Trichoderma harzianum. Phytopathology, 84, 1372–1379.Google Scholar
  73. Loper, J. E., & Buyer, J. S. (1991). Siderophores in microbial interactions of plant surfaces. MPMI, 4, 5–13.CrossRefGoogle Scholar
  74. Maurhofer, M., Hase, C., Matraux, J. P., & Defago, G. (1994). Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strains CHAO: Influence of the gacA gene and pyoverdine production. Phytopathology, 84, 139–146.CrossRefGoogle Scholar
  75. McSpadden-Gardener, B. B., & Weller, D. M. (2001). Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Applied and Environmental Microbiology, 67, 4414–4425.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Meziane, H., van der Sluis, I., van Loon, L. C., Bakker, H. M., & P.A.H.M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177–185.CrossRefGoogle Scholar
  77. Milgroom, M. G., & Cortesi, P. (2004). Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42, 311–338.PubMedCrossRefGoogle Scholar
  78. Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U., & Prem, S. (2014). Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. Australian Journal of Crop Science (AJCS), 8, 347–355.Google Scholar
  79. Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90, 622–629.PubMedCrossRefGoogle Scholar
  80. Muniyappa, V., & Veeresh, G. K. (1984). Plant virus diseases transmitted by whiteflies in Karnataka. Proceedings of Indian Academy of Sciences, 93, 397–406.CrossRefGoogle Scholar
  81. Murphy, J. F., Zehnder, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E., & Kloepper, J. W. (2000). Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant and Disease, 84, 779–784.CrossRefGoogle Scholar
  82. Ordentlich, A., Elad, Y., & Chet, I. (1988). The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology, 78, 84–87.Google Scholar
  83. Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor.  https://doi.org/10.1094/PHI-A-2006-1117-02.
  84. Phillips, A. D., Fox, T. C., King, M. D., Bhuvaneswari, T. V., & Teuber, L. R. (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 136, 2887–2894.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Press, C. M., Loper, J. E., & Kloepper, J. W. (2001). Role of iron in rhizobacteria mediated induced systemic resistance of cucumber. Phytopathology, 91, 593–598.PubMedCrossRefGoogle Scholar
  86. Ramette, A., Moenne-Loccoz, Y., & Defago, G. (2003). Prevalence of fluorescent-pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco root rot. FEMS Microbial Ecology, 44, 35–43.CrossRefGoogle Scholar
  87. Ramzan, M., Tabassum, B., Nasir, I. A., Khan, A., Tariq, M., Awan, M. F., et al. (2016). Identification and application of biocontrol agents against cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnology & Biotechnological Equipment, 30, 469–478.CrossRefGoogle Scholar
  88. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Saikia, A. K., & Muniyappa, V. (1989). Epidemiology and control of tomato leaf curl virus in Southern India. Tropical Agriculture (Trinidad), 66, 350–354.Google Scholar
  90. Schouten, A., van den Berg, G., Edel-Hermann, V., Steinberg, C., Gautheron, N., Alabouvette, C., et al. (2004). Defense responses of Fusarium oxysporum to 2,4-DAPG, a broad spectrum antibiotic produced by Pseudomonas fluorescens. MPMI, 17, 1201–1211.PubMedCrossRefGoogle Scholar
  91. Shahraki, M., Heydari, A., & Hassanzadeh, N. (2009). Investigation of antibiotic, siderophore and volatile metabolites production by Bacillus and Pseudomonas bacteria. Iranian Journal of Biology, 22, 71–85.Google Scholar
  92. Shah-Smith, D. A., & Burns, R. G. (1997). Shelf-life of a biocontrol Pseudomonas putida applied to the sugar beet seeds using commercial coatings. Biocontrol Science and Technology, 7, 65–74.CrossRefGoogle Scholar
  93. Shanahan, P., O’Sullivan, D. J., Simpson, P., Glennon, J. D., & O’Gara, F. (1992). Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58, 353–358.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sharma, R. D. (1994). Bacillus thuringiensis a biocontrol agent of Meloidogyne incognita on barley. Nematologia Brasileira, 18, 79–84.Google Scholar
  95. Silva, H. S. A., Romeiro, R. D. S., Macagnan, D., Halfeld-Vieira, B. D. A., Pereira, M. C. B., & Mounteer, A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: Non-specific protection and increase in enzyme activities. Biological Control, 29, 288–295.CrossRefGoogle Scholar
  96. Srinivasan, K., Surendiran, G., & Maathivanan, N. (2005). Pathological and molecular biological investigations on sunflower necrosis virus (SNV) and ISR mediated biological control of SNV by PGPR strains. Asian Conference on Emerging Trends in Plant- Microbe Interaction, 810 December Chennai India.Google Scholar
  97. Stirling, G. R. (1985). Host specificity of Pasteuria penetrans within the genus Meloidogyne. Nematologica, 31, 203–209.CrossRefGoogle Scholar
  98. Stirling, G. R. (2011). Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Progress in biological control (Vol. 11, pp. 1–38). Dordrecht: Springer.Google Scholar
  99. Tari, P. H., & Anderson, A. J. (1988). Fusarium wilt suppression and agglutinability of Pseudomonas putida. Applied and Environmental Microbiology, 54, 2037–2041.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Thomashow, L. S., & Weller, D. M. (1988). Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. Tritici. Journal of Bacteriology, 170, 3499–3508.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Thomashow, L. S., Weller, D. M., Bonsall, R., & Pierson, L. S. (1990). Production of de antibiotic phenazine 1-carboxylic acid by fluorescent pseudomonad species in the rhizosphere of wheat. Applied and Environmental Microbiology, 56, 908–912.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Thomashow, L. S., Bonsall, R. F., & Weller, D. M. (2002). Antibiotic production by soil and rhizosphere microbes in situ (2nd ed., pp. 638–647). Washington DC: ASM Press.Google Scholar
  103. Thresh, J. M. (1980). The origins and epidemiology of some important plant virus diseases. Applied Biology, 5, 1–65.Google Scholar
  104. Thresh, J. M. (Ed.). (1981). Pests pathogens and vegetation. London: Pitman.Google Scholar
  105. Thresh, J. M. (1982). Cropping practices and virus spread. Annual Review of Phytopathology, 20, 193–218.CrossRefGoogle Scholar
  106. Timper, P. (2014). Conserving and enhancing biological control of nematodes. Journal of Nematology, 46, 75–89.PubMedPubMedCentralGoogle Scholar
  107. Vallad, G. E., & Goodman, R. M. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.CrossRefGoogle Scholar
  108. Van Dijk, K., & Nelson, E. B. (2000). Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Applied and Environmental Microbiology, 66, 5340–5347.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Van Loon, L. C., Pieterse, B. P. A. H. M., & C.M.J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.PubMedCrossRefGoogle Scholar
  110. Van Peer, R., & Schippers, B. (1992). Lipopolysaccharides of plant-growth promoting Pseudomonas spp. strain WCS 417r induce resistance in carnation to Fusarium wilt. Netherlands Journal of Plant Pathology, 98, 129–139.CrossRefGoogle Scholar
  111. Van Wees, S. C., Pieterse, C. M., Trijssenaar, A., van’t Westende, Y. A., Hartog, F., & van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. MPMI, 10, 716–724.PubMedCrossRefGoogle Scholar
  112. Wei, J. Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S. C., & Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100, 2760–2765.  https://doi.org/10.1073/pnas.0538072100.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.PubMedCrossRefGoogle Scholar
  114. Wilhite, S. E., Lumsden, R. D., & Strancy, D. C. (2001). Peptide synthetase gene in Trichoderma virens. Applied and Environmental Microbiology, 67, 5055–5062.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yang, J., Loffredo, A., Borneman, J., & Becker, J. O. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia obtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.PubMedPubMedCentralGoogle Scholar
  116. Zuckerman, B. M., Dicklow, M. B., & Acosta, N. (1993). A strain of Bacillus thuringiensis for the control of plant parasitic nematodes. Biocontrol Science and Technology, 3, 41–46.CrossRefGoogle Scholar
  117. Zhang, S., Moyne, A., Reddy, M. S., & Kloepper, J. W. (2002). The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control, 25(3), 288–296.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yasir Iftikhar
    • 1
  • Ashara Sajid
    • 1
  • Qaiser Shakeel
    • 2
    Email author
  • Zohaib Ahmad
    • 2
  • Zia Ul Haq
    • 3
  1. 1.Department of Plant Pathology, College of AgricultureUniversity of SargodhaSargodhaPakistan
  2. 2.Discipline of Plant Pathology, University College of Agriculture and Environmental SciencesThe Islamia University of BahawalpurBahawalpurPakistan
  3. 3.Department of Plant Pathology, Faculty of Agriculture Sciences and TechnologyBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations