Advertisement

Plant Genetics and Physiology in Disease Prognosis

  • Ganesan Vadamalai
  • Lih Ling Kong
  • Yasir IftikharEmail author
Chapter
  • 26 Downloads
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)

Abstract

The dynamics of plant physiology and protein expression may largely contribute in disease diagnosis. Biochemical changes and secondary metabolites cross talk while pathogen and plant interact through cellular defense mechanisms. Plants genetics in relation to resistance levels vs pathogens helps in categorizing varieties and also the pathogen, on the basis of symptoms development. Although symptomology is the basic criterion for identification of plant diseases, other serological, biochemical and molecular assays are highly sensitive and useful for correct diagnosis of plant diseases. Advances in plant physiology and genetics, under varying spatio-temporal scales, are used for the detection and management of diseases. Thus, biochemical characterization of diseased plants opens new trends in disease diagnosis to formulate management strategies. In this chapter we focused on the comparison between genetics and physiology of diseased and healthy plants. Moreover, effect of biochemical changes due to certain pathogens on host plants are also discussed as concerns detection. The use of proteome in disease diagnosis is also described. Genetics of resistance and susceptible varieties vs diseases was highlighted for disease diagnosis. As different plant pathogens such as fungi, bacteria, nematodes, viruses and virus-like pathogens have different expression profiles during disease progression,, physiology and genetics of diseased plants appear as useful tools for diagnosis.

Keywords

Disease prognosis Plant physiology Plant genetics Induced resistance Biochemical detection 

References

  1. Audenaert, K., Pattery, T., Comelis, P., & Hofte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Molecular Plant-Microbe Interactions, 15, 1147–1156.PubMedCrossRefGoogle Scholar
  2. Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.PubMedCrossRefGoogle Scholar
  3. Bakker, P. A. H. M., Ran, L. X., Pieterse, C. M. J., & Van Loon, L. C. (2003). Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Canadian Journal of Plant Pathology, 25, 5–9.CrossRefGoogle Scholar
  4. Barbieri, P., & Galli, E. (1993). Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Research in Microbiology, 144, 69–75.PubMedCrossRefGoogle Scholar
  5. Barbosa, C. J., Pina, J. A., Perez-Panades, J., Bernad, L., Serra, P., Navarro, L., & Duran-Vila, N. (2005). Mechanical transmission of citrus viroids. Plant Disease, 89, 749–754.PubMedCrossRefGoogle Scholar
  6. Bauer, W. D., & Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology, 7, 429–433.PubMedCrossRefGoogle Scholar
  7. Bell, A. A. (1980). The time sequence of defense. In J. G. Horsfall & E. B. Cowling (Eds.), Plant disease: An advanced treatise (Vol. 5, pp. 53–73). New York: Academic.Google Scholar
  8. Brencic, A., & Winans, S. C. (2005). Detection of and response to signals involved in host-microbe interactions by plantassociated bacteria. Microbiology and Molecular Biology Reviews, 69, 155–194.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cao, M. J., Atta, S., Liu, Y. Q., Wang, X. F., Zhou, C. Y., Mustafa, A., & Iftikhar, Y. (2009). First report of citrus bent leaf viroid and citrus dwarfing viroid from citrus in Punjab, Pakistan. Plant Disease, 93(8), 840.PubMedCrossRefGoogle Scholar
  10. Caruso, F. L., & Kuc, J. (1979). Induced resistance of cucumber to anthracnose and angular leaf spot by Pseudomonas lachrymans and Colletotrichum lagenarium. Physiological Plant Pathology, 14, 191–201.CrossRefGoogle Scholar
  11. Cason, E. T., Richardson, P. E., Essenberg, M. K., Brinkerhoff, L. A., Johnson, W. M., & Venere, R. J. (1978). Ultrastructural cell wall alterations in immune cotton leaves inoculated with Xanthomonas malvacearum. Phytopathology, 68, 1015–1021.CrossRefGoogle Scholar
  12. De Meyer, G., Audenaert, K., & Hofte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in plant salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 105, 513–517.CrossRefGoogle Scholar
  13. Dropkin, V. H. (1969). The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: Reversal by temperature. Phytopathology, 59, 1632–1637.Google Scholar
  14. Essenber, M., Cason, E. T., Hamilton, B., Brinkerhoff, L. A., Gholson, R. K., & Richardson, P. E. (1979). Single cell colonies of Xanthomonas malvacearum in susceptible and immune cotton leaves and the local resistant response to colonies in immune leaves. Physiological Plant Pathology, 15, 53–56.CrossRefGoogle Scholar
  15. Flor, H. H. (1946). Genetics of pathogenicity in Melampsora lini. Journal of Agricultural Research, 73, 335–357.Google Scholar
  16. Frankenberger, W. T., & Arshad, M. (1995). Phytohormones in soils-microbial production and function. New York: Marcel Dekker.Google Scholar
  17. Gabriel, D. W., Burges, A., & Lazo, G. R. (1986). Gene-for-gene interac- tions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proceedings of the National Academy of Sciences of the United States of America, 83, 6415–6419.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Goodman, R. N., Huang, P., & White, J. A. (1976). Ultrastructural evidence for immobilization of an incompatible bacterium, Pseudomonas pisi, in tobacco leaf tissue. Phytopathology, 66, 754–764.CrossRefGoogle Scholar
  19. Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant bacterium signaling process. Soil Biology and Biochemistry, 37, 395–412.CrossRefGoogle Scholar
  20. Griffin, G. D., & Elgin, J. H. (1979). Penetration and development of Meloidogyne hapla in resistant and susceptible alfalfa under differing temperatures. Journal of Nematology, 9, 51–56.Google Scholar
  21. Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8, 1855–1869.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Higgins, V. J., & de Wit, P. J. G. M. (1985). Use of race- and cultivar°specific elicitors from intercellular fluids for characterising races of Cladosporium fulvum and resistant tomato cultivars. Phytopathology, 75, 695–699.CrossRefGoogle Scholar
  23. Hodgson, R. A. J., Wall, G. C., & Randles, J. W. (1998). Specific identification of Coconut tinangaja viroid for differential field diagnosis of viroids in coconut palm. Phytopathology, 88, 774–781.PubMedCrossRefGoogle Scholar
  24. Hunter, R. E. (1978). Effects of catechin in culture and in cotton seedlings on the growth and polygalacturonase activity of Rhizoctonia solani. Phytopathology, 68, 1032–1036.CrossRefGoogle Scholar
  25. Hunter, R. E., Halloin, J. M., Veech, J. A., & Carter, W. W. (1978). Terpenoid accumulation in hypocotyls of cotton seedlings during aging and after infection by Rhizoctonia solani. Phytopathology, 68, 347–350.CrossRefGoogle Scholar
  26. Innes, N. L. (1974). Resistance to bacterial blight of cotton varieties homozygous for combinations of B resistance genes. The Annals of Applied Biology, 78, 89–98.PubMedCrossRefGoogle Scholar
  27. Jena, R. N., & Rao, Y. S. (1977). Nature of resistance in rice (Oryza sativa L.) to the root-knot nematode (Meloidogyne graminicola Golden and Birchfield) II. Histopathology of nematode infection in rice varieties. Proceedings of the Indian Academy of Sciences – Section B, 86, 87–89.CrossRefGoogle Scholar
  28. Jenns, A. E., & Kuc, J. (1979). Graft transmission of systemic resistance of cucumber to anthracnose induced by Colletotrichum lagenarium and tobacco necrosis virus. Phytopathology, 69, 753–756.CrossRefGoogle Scholar
  29. Jones, I. T., & Hayes, J. D. (1971). The effect of sowing date on adult plant resistance to Erysiphe graminis f. sp. avenae in oats. The Annals of Applied Biology, 68, 31–39.CrossRefGoogle Scholar
  30. Kiely, P. D., Haynes, J. M., Higgins, C. H., Franks, A., Mark, G. L., Morrissey, J. P., & O’Gara, F. (2006). Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microbial Ecology, 51, 257–266.PubMedCrossRefGoogle Scholar
  31. Khoo, Y. W., Iftikhar, Y., Murugan, T., Roslin, N. A., Adawiyah, R., Kong, L. L., & Vadamalai, G. (2017). First report of Citrus bent leaf viroid in Malaysia. Journal of Plant Pathology, 99(1), 287–304.Google Scholar
  32. Kloepper, J. W., Ryu, C. M., & Zhang, S. A. (2004). Induced systemic resistance and promotion of growth by Bacillus spp. Phytopathology, 94, 1259–1266.PubMedCrossRefGoogle Scholar
  33. Kuc, J., & Hammerschmidt, R. (1978). Acquired resistance to bacterial and fungal infection. Annals of Applied Biology, 89, 313–317.Google Scholar
  34. Mares, D. J. (1979). Microscopic study of the development of yellow rust (Puccinia striijormis) in a wheat cultivar showing adult plant resistance. Physiological Plant Pathology, 15, 289–296.CrossRefGoogle Scholar
  35. Mark, G. L., Dow, L. M., Kiely, P. D., Higgins, H., Haynes, J., Baysse, C., et al. (2005). Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proceedings of the National Academy of Sciences of the United States of America, 102, 17454–17459.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Matta, A. (1971). Microbial penetration and immunization of uncongenial host plants. Annual Review of Phytopathology, 9, 387–410.CrossRefGoogle Scholar
  37. Morris, T. J., & Wright, N. S. (1975). Detection by polyacrylamide gel of a diagnostic nucleic acid from tissue infected with Potato spindle tuber viroid. American Potato Journal, 52, 57–63.CrossRefGoogle Scholar
  38. Meziane, H., Van der Sluis, I., Van Loon, L. C., Hofte, M., & Bakker, P. A. H. M. (2005). Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Molecular Plant Pathology, 6, 177–185.PubMedCrossRefGoogle Scholar
  39. Narayanasamy, P., & Doraiswamy, S. (2003). Plant viruses and viral diseases. Chennai: New Century Book House.Google Scholar
  40. Narayanasamy, P. (2008). Molecular biology in plant pathogenesis and disease management. Microbial plant pathogens Volume 1. Dordrecht: Springer Science+Business Media B.V.Google Scholar
  41. Nilsen, K. N., Hodges, C. F., & Madsen, J. P. (1979). Pathogenesis of Drechslera sorokiniana leaf spot on progressively older leaves of Poa pratensis as influenced by photoperiod and light quality. Physiological Plant Pathology, 15, 171–176.CrossRefGoogle Scholar
  42. O’Brien, P. C., & Fisher, J. M. (1978). Studies on the mechanism of resistance of wheat to Heterodera avenae. Nematologica, 24, 463–471.CrossRefGoogle Scholar
  43. Ook, A. A. (1975). Effect oflow concentrations of Xanthomonas vesicatoria infiltrated into pepper leaves. Phytopathology, 65, 487–489.CrossRefGoogle Scholar
  44. Oudemans, P., & Coffey, M. D. (1991a). Isozyme comparison within and among world wide sources of three morphologically distinct species of Phytophthora. Mycological Research, 95, 19–30.CrossRefGoogle Scholar
  45. Oudemans, P., & Coffey, M. D. (1991b). A revised systematics of twelve papillate Phytophthora species based on isozyme analysis. Mycological Research, 95, 1025–1046.CrossRefGoogle Scholar
  46. Phillips, D. A., Fox, T. C., King, M. D., Bhuvaneswari, T. V., & Teuber, L. R. (2004). Microbial products trigger amino acid exudation from plant roots. Plant Physiology, 136, 2887–2894.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Pieterse, C. M. J., & Van Loon, L. C. (1999). Salicylic acidindependent plant defence pathways. Trends in Plant Science, 4, 52–58.PubMedCrossRefGoogle Scholar
  48. Randles, J. W. (1985). Coconut cadang-cadang viroid. In K. Maramorosch & J. McKelvey (Eds.), Viroids and prions-subviral pathogens of plants and animals (pp. 39–74). New York: Academic Press.Google Scholar
  49. Reynolds, H. W., Carter, W. W., & O’Bannon, J. H. (1970). Symptomless resistance of alfalfa to Meloidogyne incognita acrita. Journal of Nematology, 2, 131–134.PubMedPubMedCentralGoogle Scholar
  50. Sequeira, L., & Hill, L. M. (1974). Induced resistance in tobacco leaves: The growth of Pseudomonas solanacearum in protected tissues. Physiological Plant Pathology, 4, 447–455.CrossRefGoogle Scholar
  51. Sequeira, L., Gaard, G., & De Zoeten, G. A. (1977). Interaction of bacteria and host cell walls: Its relation to mechanisms of induced resistance. Physiological Plant Pathology, 10, 43–50.CrossRefGoogle Scholar
  52. Sing, V. O., & Schroth, M. N. (1977). Bacteria-plant cell surface interactions: Active immobilization of saprophytic bacteria in plant leaves. Science, 197, 759–761.PubMedCrossRefGoogle Scholar
  53. Staskawicz, B. J., Dahlbeck, D., & Keen, N. T. (1984). Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race incompatibility on Glycine max (L.) Merr. Proceedings of the National Academy of Sciences of the United States of America, 81, 6024–6028.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Tanimoto, E. (2005). Regulation of root growth by plant hormones: Roles for auxin and gibberellin. Critical Reviews in Plant Sciences, 24, 249–265.CrossRefGoogle Scholar
  55. Van Loon, L. C., & Bakker, P. A. H. M. (2003). Signalling in rhizobacteria-plant interactions. In H. De Kroon & E. J. W. Visser (Eds.), Root ecology (Ecological Studies) (Vol. 168, pp. 297–330). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  56. Van Loon, L. C., & Bakker, P. A. H. M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 39–66). Dordrecht: Springer.CrossRefGoogle Scholar
  57. Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.CrossRefGoogle Scholar
  58. Veech, J. A., & Endo, B. Y. (1970). Comparative morphology and enzyme histochemistry in root-knot resistant and susceptible soybeans. Phytopathology, 60, 896–902.CrossRefGoogle Scholar
  59. Waterman, M. A., Aist, J. R., & Israel, H. W. (1978). Centrifugation studies help clarify the role of papilla formation in compatible barley powdery mildew interactions. Phytopathology, 68, 797–802.CrossRefGoogle Scholar
  60. Webster, D. M., & Sequeira, L. (1977). Expression of resistance in bean pods to an incompatible isolate of Pseudomonas syringae. Canadian Journal of Botany, 55, 2043–2052.CrossRefGoogle Scholar
  61. Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81, 1508–1512.CrossRefGoogle Scholar
  62. Wheeler, H. (1977). Increase with age in sensitivity of oat leaves to victorin. Phytopathology, 67, 859–861.CrossRefGoogle Scholar
  63. Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiology Reviews, 25, 365–404.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ganesan Vadamalai
    • 1
  • Lih Ling Kong
    • 2
  • Yasir Iftikhar
    • 3
    Email author
  1. 1.Department of Plant ProtectionUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Institute of Tropical AgricultureUniversiti Putra MalaysiaSeri Kembangan, SerdangMalaysia
  3. 3.Department of Plant Pathology, College of AgricultureUniversity of SargodhaSargodhaPakistan

Personalised recommendations