Advertisement

Precision Agriculture Technologies for Management of Plant Diseases

  • Siva K. Balasundram
  • Kamlesh Golhani
  • Redmond R. Shamshiri
  • Ganesan Vadamalai
Chapter
  • 6 Downloads
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)

Abstract

Plant diseases contribute 10–16% losses in global harvests each year, costing an estimated US$ 220 billion. Abundant use of chemicals such as bactericides, fungicides, and nematicides to control plant diseases are causing adverse effects to many agroecosystems. Precision plant protection offers a non-destructive means of managing plant diseases based on the concept of spatio-temporal variability. Global Navigation Satellite System (GNSS) and Geographic Information System (GIS) allow for assessment of field heterogeneity due to disease problems and can enable site-specific intervention. Similarly, hyperspectral remote sensing is a cutting-edge spectral approach for plant diseases detection. The main aim of precision plant protection is to significantly reduce the injudicious use of chemical inputs and hence the adverse impact of chemicals to the environment. This chapter provides some insights into the deployment of site- and time-specific approaches to manage plant disease problems in a balanced and optimized manner.

Keywords

Precision agriculture Global positioning systems Geographic information systems Remote sensing Spectroradiometer 

References

  1. Ahmed, S. S. S. J., Santosh, W., Kumar, S., & Thanka Christlet, T. H. (2010). Neural network algorithm for the early detection of Parkinson’s disease from blood plasma by FTIR micro-spectroscopy. Vibrational Spectroscopy, 53, 181–188.  https://doi.org/10.1016/j.vibspec.2010.01.019.CrossRefGoogle Scholar
  2. Ashourloo, D., Mobasheri, M., & Huete, A. (2014). Developing two spectral disease indices for detection of wheat leaf rust (Puccinia triticina). Remote Sensing, 6, 4723–4740.  https://doi.org/10.3390/rs6064723.CrossRefGoogle Scholar
  3. Ashourloo, D., Matkan, A. A., Huete, A., Aghighi, H., & Mobasheri, M. R. (2016). Developing an index for detection and identification of disease stages. IEEE Geosc Remote Sens Lett, 13, 851–855.  https://doi.org/10.1109/LGRS.2016.2550529.CrossRefGoogle Scholar
  4. Ayala-Silva, T., & Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 35, 305–317.CrossRefGoogle Scholar
  5. Balabin, R. M., & Smirnov, S. V. (2011). Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Analytica Chimica Acta, 692, 63–72.  https://doi.org/10.1016/j.aca.2011.03.006.CrossRefPubMedGoogle Scholar
  6. Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S., et al. (2018). Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors, 18, 441.  https://doi.org/10.3390/s18020441.CrossRefGoogle Scholar
  7. Beltrán-Peña, H., Soria-Ruiz, J., Téliz-Ortiz, D., Ochoa-Martínez, D. L., Nava-Díaz, C., & Ochoa-Ascencio, S. (2014). Molecular and satellite spectral imaging detection of Avocado Sunblotch Viroid (ASBVd). Revista Fitotecnia Mexicana, 37, 21–29.Google Scholar
  8. Benetoli da Silva, T. R., Reis de Sousa, A. C., & de Goés Maciel, C. D. (2012). Relationship between chlorophyll meter readings and total N in crambe leaves as affected by nitrogen topdressing. Industrial Crops and Products, 39, 135–138.  https://doi.org/10.1016/j.indcrop.2012.02.008.CrossRefGoogle Scholar
  9. Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 855–867.  https://doi.org/10.1093/jxb/erl123.CrossRefPubMedGoogle Scholar
  10. Blackmer, T. M., Schepers, J. S., & Meyer, G. E. (1995). Remote sensing to detect nitrogen deficiency in corn. In: Site-specific management for agricultural systems (pp. 505–512).  https://doi.org/10.2134/1995.site-specificmanagement.c35.Google Scholar
  11. Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84.  https://doi.org/10.1016/j.agrformet.2013.01.007.CrossRefGoogle Scholar
  12. Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.  https://doi.org/10.1016/S0034-4257(00)00197-8.CrossRefGoogle Scholar
  13. Carter, G. A., & Knapp, A. K. (2001). Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88, 677.  https://doi.org/10.2307/2657068.CrossRefPubMedGoogle Scholar
  14. Carter, G. A., & Miller, R. L. (1994). Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sensing of Environment, 50, 295–302.  https://doi.org/10.1016/0034-4257(94)90079-5.CrossRefGoogle Scholar
  15. Castro, K. L., & Sanchez-Azofeifa, G. A. (2008). Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors, 8, 51–69.  https://doi.org/10.3390/s8010051.CrossRefPubMedGoogle Scholar
  16. Chaerle, L. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant & Cell Physiology, 45, 887–896.  https://doi.org/10.1093/pcp/pch097.CrossRefGoogle Scholar
  17. Chappelle, E. W., Kim, M. S., & McMurtrey, J. E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239–247.  https://doi.org/10.1016/0034-4257(92)90089-3.CrossRefGoogle Scholar
  18. Chen, X., Han, W., & Li, M. (2012). Spectroscopic determination of leaf water content using linear regression and an artificial neural network. African Journal of Biotechnology, 11, 2518–2527.  https://doi.org/10.5897/AJB11.2733.CrossRefGoogle Scholar
  19. Clevers, J. G. P. W., Kooistra, L., & Salas, E. A. L. (2004). Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. International Journal of Remote Sensing, 25, 3883–3895.  https://doi.org/10.1080/01431160310001654473.CrossRefGoogle Scholar
  20. Damm, A., Guanter, L., Verhoef, W., Schläpfer, D., Garbari, S., & Schaepman, M. E. (2015). Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sensing of Environment, 156, 202–215.  https://doi.org/10.1016/j.rse.2014.09.031.CrossRefGoogle Scholar
  21. Diener, T. O. (1999). Viroids and the nature of viroid diseases. In 100 Years of Virology (pp. 203–220). Vienna: Springer.  https://doi.org/10.1007/978-3-7091-6425-9_15.CrossRefGoogle Scholar
  22. Gillespie, T. J., & Sentelhas, P. C. (2008). Agrometeorology and plant disease management: a happy marriage. Science in Agriculture.  https://doi.org/10.1590/S0103-90162008000700012.CrossRefGoogle Scholar
  23. Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2017a). Use of reflectance spectroscopy as a tool for screening viroid-inoculated oil palm seedlings. Open Access Journal of Agricultural Research, 2, 1–5.  https://doi.org/10.23880/OAJAR-16000145.CrossRefGoogle Scholar
  24. Golhani, K., Balasundram, S.K., Vadamalai, G., & Pradhan, B. (2017b). Red-edge indices to diagnose orange spotting disease of oil palm in Malaysia. In: 38th Asian Conference on Remote Sensing - Space Applications: Touching Human Lives, ACRS 2017.Google Scholar
  25. Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2018). A review of neural networks in plant disease detection using hyperspectral data. Information Processing in Agriculture, 5, 354–371.  https://doi.org/10.1016/j.inpa.2018.05.002.CrossRefGoogle Scholar
  26. Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2019a). Selection of a spectral index for detection of orange spotting disease in oil palm (Elaeis guineensis Jacq.) using red edge and neural network techniques. Journal of the Indian Society of Remote Sensing, 47, 639–646.  https://doi.org/10.1007/s12524-018-0926-4.CrossRefGoogle Scholar
  27. Golhani, K., Balasundram, S. K., Vadamalai, G., & Pradhan, B. (2019b). Estimating chlorophyll content at leaf scale in viroid- inoculated oil palm seedlings (Elaeis guineensis Jacq.) using reflectance spectra (400 nm–1050 nm). International Journal of Remote Sensing, 40, 647–7662.  https://doi.org/10.1080/01431161.2019.1584930.CrossRefGoogle Scholar
  28. Granados-Ramírez, R., Reyna-Trujillo, T., Gómez-Rodríguez, G., & Soria-Ruiz, J. (2004). Analysis of NOAA-AVHRR-NDVI images for crops monitoring. International Journal of Remote Sensing, 25, 1615–1627.  https://doi.org/10.1080/0143116031000156855.CrossRefGoogle Scholar
  29. Grinn-Gofroń, A., Nowosad, J., Bosiacka, B., Camacho, I., Pashley, C., Belmonte, J., et al. (2019). Airborne Alternaria and Cladosporium fungal spores in Europe: forecasting possibilities and relationships with meteorological parameters. Science of the Total Environment, 653, 938–946.CrossRefGoogle Scholar
  30. Grisham, M. P., Johnson, R. M., & Zimba, P. V. (2010). Detecting sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes. Journal of Virological Methods, 167, 140–145.  https://doi.org/10.1016/j.jviromet.2010.03.024.CrossRefPubMedGoogle Scholar
  31. Helland, I. S. (2001). Some theoretical aspects of partial least squares regression. Chemometrics and Intelligent Laboratory Systems, 58, 97–107.  https://doi.org/10.1016/S0169-7439(01)00154-X.CrossRefGoogle Scholar
  32. Huete, A. R. (1989). Soil influences in remotely sensed vegetation-canopy spectra. In G. Asrar (Ed.), Theory and applications of optical remote sensing (pp. 107–141). New York: Wiley-Interscience.Google Scholar
  33. Indahl, U. G. (2014). The geometry of PLS1 explained properly: 10 key notes on mathematical properties of and some alternative algorithmic approaches to PLS1 modelling. Journal of Chemometrics, 28, 168–180.  https://doi.org/10.1002/cem.2589.CrossRefGoogle Scholar
  34. Iounousse, J., Er-Raki, S., El Motassadeq, A., & Chehouani, H. (2015). Using an unsupervised approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal satellite images. Applied Soft Computing, 30, 1–13.  https://doi.org/10.1016/j.asoc.2015.01.037.CrossRefGoogle Scholar
  35. Jimenez, L. O., & Landgrebe, D. A. (1999). Hyperspectral data analysis and supervised feature reduction via projection pursuit. IEEE Transactions on Geoscience and Remote Sensing, 37, 2653–2667.CrossRefGoogle Scholar
  36. Jones, C. D., Jones, J. B., & Lee, W. S. (2010). Diagnosis of bacterial spot of tomato using spectral signatures. Computers and Electronics in Agriculture, 74, 329–335.  https://doi.org/10.1016/j.compag.2010.09.008.CrossRefGoogle Scholar
  37. Knipling, E. B. (1970). Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1, 155–159.  https://doi.org/10.1016/S0034-4257(70)80021-9.CrossRefGoogle Scholar
  38. Köksal, E. S. (2011). Hyperspectral reflectance data processing through cluster and PCA for estimating irrigation and yield related indicators. Agricultural Water Management, 98, 1317–1328.  https://doi.org/10.1016/j.agwat.2011.03.014.CrossRefGoogle Scholar
  39. Krafft, C., Steiner, G., Beleites, C., & Salzer, R. (2009). Disease recognition by infrared and raman spectroscopy. Journal of Biophotonics, 2, 13–28.  https://doi.org/10.1002/jbio.200810024.CrossRefPubMedGoogle Scholar
  40. Krezhova, D., Stoev, A., & Maneva, S. (2015). Detection of biotic stress caused by apple stem grooving virus in apple trees using hyperspectral reflectance analysis. Comptes Rendus de l’Académie Bulgare des Sciences, 68, 175–182.Google Scholar
  41. Kuska, M. T., & Mahlein, A. K. (2018). Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. The European Journal of Plant Pathology, 1–6.Google Scholar
  42. Lacis, A. A., & Hansen, J. (1974). A parameterization for the absorption of solar radiation in the earth’s atmosphere. Journal of the Atmospheric Sciences, 31, 118–133.CrossRefGoogle Scholar
  43. Lee, K. M., Herrman, T. J., Lingenfelser, J., & Jackson, D. S. (2005). Classification and prediction of maize hardness-associated properties using multivariate statistical analyses. Journal of Cereal Science, 41, 85–93.  https://doi.org/10.1016/j.jcs.2004.09.006.CrossRefGoogle Scholar
  44. Lee, W. S., Alchanatis, V., Yang, C., Hirafuji, M., Moshou, D., & Li, C. (2010). Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture, 74, 2–33.  https://doi.org/10.1016/j.compag.2010.08.005.CrossRefGoogle Scholar
  45. Lemon, S. M., Hamburg, M. A., Sparling, P. F., Choffnes, E. R., & Mack, A. (2007). Global infectious disease surveillance and detection : assessing the challenges — finding solutions, Workshops summary (p. 284). Washington, DC: National Academies Press. doi:978-0-309-11114-0.Google Scholar
  46. Li, L., Ustin, S. L., & Lay, M. (2005). Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico. Remote Sensing of Environment, 94, 1–16.  https://doi.org/10.1016/j.rse.2004.08.010.CrossRefGoogle Scholar
  47. Li, L., Ren, T., Ma, Y., Wei, Q., Wang, S., Li, X., et al. (2016). Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Computers and Electronics in Agriculture, 126, 21–31.  https://doi.org/10.1016/j.compag.2016.05.008.CrossRefGoogle Scholar
  48. Lingjaerde, O. C., & Christophersen, N. (2000). Shrinkage structure of partial least squares. Scandinavian Journal of Statistics, 27, 459–473.  https://doi.org/10.1111/1467-9469.00201.CrossRefGoogle Scholar
  49. Mahlei, A.-K., Rumpf, T., Welke, P., Dehne, H.-W., Plümer, L., Steiner, U., & Oerke, E.-C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30.  https://doi.org/10.1016/j.rse.2012.09.019.CrossRefGoogle Scholar
  50. Mahlein, A. (2010). Detection, identification and quantification of fungal diseases of sugar beet leaves using imaging and non-imaging hyperspectral techniques. Bonn: University of Bonn.Google Scholar
  51. Mahlein, A. K. (2016). Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease, 100, 241–251.  https://doi.org/10.1094/PDIS-03-15-0340-FE.CrossRefPubMedGoogle Scholar
  52. Martens, H. (2001). Reliable and relevant modelling of real world data: a personal account of the development of PLS regression. Chemometrics and Intelligent Laboratory Systems, 58, 85–95.CrossRefGoogle Scholar
  53. Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., et al. (2014). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35, 1–25.  https://doi.org/10.1007/s13593-014-0246-1.CrossRefGoogle Scholar
  54. Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., Solovchenko, A. E., & Pogosyan, S. I. (2003). Application of reflectance spectroscopy for analysis of higher plant pigments. Russian Journal of Plant Physiology, 50, 704–710.CrossRefGoogle Scholar
  55. Oerke, E. C., Gerhards, R., Menz, G., & Sikora, R. A. (2010). Precision crop protection-the challenge and use of heterogeneity (p. 441). Dordrecht: Springer.CrossRefGoogle Scholar
  56. Paydipati, R. (2004). Evaluation of clasifiers for automatic disease detection in citrus leaves machine vision. Master Thesis, Univ. FL. In USA.Google Scholar
  57. Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daughtry, C. S. T., & Upchurch, D. R. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69, 647–664.  https://doi.org/10.14358/PERS.69.6.647.CrossRefGoogle Scholar
  58. Riedell, W.E., Osborne, S.L., Hesler L.S., & Blackmer, T.M. (2000). Remote sensing of insect damage in wheat. In: Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA (16–19 July, 2000), 1–11.Google Scholar
  59. Rouse, J. W., Haas, R. H., Deering, D. W., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Greenbelt: NASA/GSFC type III final report.Google Scholar
  60. Rumpf, T., Mahlein, A., Dörschlag, D., & Plümer, L. (2009). Identification of combined vegetation indices for the early detection of plant diseases. In: C.M.U. Neale, and A. Maltese (Eds.). SPIE Europe Remote Sensing, 747217. doi: https://doi.org/10.1117/12.830525.
  61. Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74, 91–99.  https://doi.org/10.1016/j.compag.2010.06.009.CrossRefGoogle Scholar
  62. Schellber, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture on grassland: applications, perspectives and constraints. European Journal of Agronomy, 29, 59–71.CrossRefGoogle Scholar
  63. Selvaraja, S., Balasundram, S. K., Vadamalai, G., & Husni, M. H. A. (2013). Site-specific disease management: a preliminary case with orange spotting in oil palm. In J. V. Stafford (Ed.), Precision Agriculture 13 (pp. 577–584). Dordrecht: Precision Agriculture ’13. Wageningen Academic Publishers.  https://doi.org/10.3920/978-90-8686-778-3_71.CrossRefGoogle Scholar
  64. Slonecker, E. (2011). Analysis of the effects of heavy metals on vegetation hyperspectral reflectance properties. In Hyperspectral remote sensing of vegetation (pp. 561–578). Boca Raton: CRC Press.  https://doi.org/10.1201/b11222-33.CrossRefGoogle Scholar
  65. Steele, M., Gitelson, A. A., & Rundquist, D. (2008). Nondestructive estimation of leaf chlorophyll content in grapes. American Journal of Enology and Viticulture, 2, 299–305.  https://doi.org/10.2307/2445170.CrossRefGoogle Scholar
  66. Sundberg, R. (1999). Multivariate calibration — direct and indirect regression methodology. Scandinavian Journal of Statistics, 26, 161–207.CrossRefGoogle Scholar
  67. Thanarajoo, S. S. (2014). Rapid detection, accumulation and translocation of Coconut cadang-cadang viroid variants in oil palm. Serdang: Universiti Putra Malaysia.Google Scholar
  68. Thomas, S., Wahabzada, M., Kuska, M. T., Rascher, U., & Mahlein, A. K. (2017). Observation of plant--pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Functional Plant Biology, 44, 23–34.CrossRefGoogle Scholar
  69. Thomas, S., Kuska, M. T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M., et al. (2018). Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. The Journal of Plant Diseases and Protection, 125, 5–20.CrossRefGoogle Scholar
  70. Vadamalai, G., Hanold, D., Rezaian, M. A., & Randles, J. W. (2006). Variants of Coconut cadang-cadang viroid isolated from an African oil palm (Elaeis guineensis Jacq.) in Malaysia. Archives of Virology, 151, 1447–1456.  https://doi.org/10.1007/s00705-005-0710-y.CrossRefPubMedGoogle Scholar
  71. Van Maanen, A., & Xu, X. M. (2003). Modelling plant disease epidemics. In Epidemiology of Mycotoxin Producing Fungi (pp. 669–682). Dordrecht: Springer.  https://doi.org/10.1007/978-94-017-1452-5_2.CrossRefGoogle Scholar
  72. Wasukar, A. R. (2014). Artificial neural network – an important asset for future computing. International Journal of Emerging Trends in Science, 1, 28–34.Google Scholar
  73. West, J. S., Bravo, C., Oberti, R., Moshou, D., Ramon, H., & McCartney, H. A. (2010). Detection of fungal diseases optically and pathogen inoculum by air sampling. In Precision crop protection - the challenge and use of heterogeneity (pp. 135–149). Dordrecht: Springer.  https://doi.org/10.1007/978-90-481-9277-9_9.CrossRefGoogle Scholar
  74. Wold, H. (1975). Soft modeling by latent variables: the nonlinear iterative partial least squares (NIPALS) approach. Journal of Applied Probability, 12(S1), 117–142.CrossRefGoogle Scholar
  75. Wu, Y. H., Cheong, L. C., Meon, S., Lau, W. H., Kong, L. L., Joseph, H., & Vadamalai, G. (2013). Characterization of Coconut cadang-cadang viroid variants from oil palm affected by orange spotting disease in Malaysia. Archives of Virology, 158, 1407–1410.  https://doi.org/10.1007/s00705-013-1624-8.CrossRefPubMedGoogle Scholar
  76. Yang, F., Li, J., Gan, X., Qian, Y., Wu, X., & Yang, Q. (2010). Assessing nutritional status of Festuca arundinacea by monitoring photosynthetic pigments from hyperspectral data. Computers and Electronics in Agriculture, 70, 52–59.  https://doi.org/10.1016/j.compag.2009.08.010.CrossRefGoogle Scholar
  77. Zhao, X. (2012). Advances and technology in infrared spectroscopy. Journal of Anqing Teachers College, 18, 94–97.Google Scholar
  78. Zhu, H., Cen, H., Zhang, C., & He, Y. (2016). Early detection and classification of tobacco leaves inoculated with tobacco mosaic virus based on hyperspectral imaging technique. ASABE Annual International Meeting, 1.  https://doi.org/10.13031/aim.20162460422.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Siva K. Balasundram
    • 1
  • Kamlesh Golhani
    • 1
  • Redmond R. Shamshiri
    • 1
  • Ganesan Vadamalai
    • 2
  1. 1.Department of Agriculture TechnologyUniversiti Putra Malaysia (UPM)SerdangMalaysia
  2. 2.Department of Plant ProtectionUniversiti Putra Malaysia (UPM)SerdangMalaysia

Personalised recommendations