Genome Editing Technologies for Resistance Against Phytopathogens: Principles, Applications and Future Prospects

  • Siddra Ijaz
  • Imran Ul Haq
Part of the Sustainability in Plant and Crop Protection book series (SUPP, volume 13)


Genetic variation in crop plants is an indispensable factor for sustainable agriculture. For creating genetic variation, plant biotechnology relied on various random mutagenesis approaches such as γ-radiation, EMS generated mutagenesis etc. Now these methods are being replaced by genome editing technologies that precisely manipulate specific sequences in the genome. These technologies, based on sequence-specific nucleases (SSNs), mediated double-strand breaks in DNA at specific sites within the genome. Among them, three foundational targeted genome editing technologies are: TALENs (transcription activator-like effector nucleases), CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) and ZFNs (zinc-finger nucleases). TALENs and ZNFs are synthetic engineered bipartite enzymes, consisting of two domains, (1) DNA binding domain and (2) Fok1 domain (nuclease).CRISPR/Cas 9 is a two-component unicellular machinery, with a sgRNA first component (which targets the specific sequence in genome), and Cas 9 as a second component (an enzyme that mediates site-specific targeting of genome). The Cas9 protein is DNA nuclease whose activity is determined by target seed sequence (first 20 nucleotides) of sgRNA. Therefore, multiple sgRNAs with different target seed sequences direct Cas9 to corresponding spots. This imperative characteristic of Cas9 enables it to edit at multiple sites simultaneously and imparts potential applications in both basic and applied research. By using these approaches, disease resistance in plants is achieved by knocking out those loci contributing in disease susceptibility and negative regulator genes in genome. Thereby these techniques are becoming a new toolbox of every modern molecular biology laboratory for editing plant genome. This chapter provides a detailed overview of genome editing approaches for developing disease resistant in plants, describing comprehensive knowledge on genome editing principles, application of these techniques, challenges and prospects.


CRISPR-Cas 9 TALENs ZNFs Fok1 domain DSBs 


  1. Andolfo, G., & Ercolano, M. R. (2015). Plant innate immunity multicomponent model. Frontiers in Plant Science, 6, 987.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Becker, M. (2011). Method of the year. Nature Methods, 9, 1.Google Scholar
  3. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33, 41–52.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Carlson, D. F., Fahrenkrug, S. C., & Hackett, P. B. (2012). Targeting DNA with fingers and TALENs. Molecular Therapy-Nucleic Acids, 1(1), e3.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773–782.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cathomen, T., & Joung, J. K. (2008). Zinc-finger nucleases: The next generation emerges. Molecular Therapy, 16, 1200–1207.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., et al. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 39, 82.CrossRefGoogle Scholar
  9. Chapman, J. R., Taylor, M. R., & Boulton, S. J. (2012). Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 47, 497–510.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Char, S. N., Unger-Wallace, E., Frame, B., Briggs, S. A., Main, M., Spalding, M. H., et al. (2015). Heritable site-specific mutagenesis using TALEN s in maize. Plant Biotechnology Journal, 13, 1002–1010.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757–761.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dong, X., Jiang, Z., Peng, Y. L., & Zhang, Z. (2015). Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiology, 167(3), 1186–1203.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., & Chandrasegaran, S. (2005). Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research, 33, 5978–5990.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., et al. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87(1–2), 99–110.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109, E2579–E2586.CrossRefGoogle Scholar
  17. Gawehns, F., Cornelissen, B. J., & Takken, F. L. (2013). The potential of effector-target genes in breeding for plant innate immunity. Microbial Biotechnology, 6, 223–229.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Gupta, A., Christensen, R. G., Rayla, A. L., Lakshmanan, A., Stormo, G. D., & Wolfe, S. A. (2012). An optimized two-finger archive for ZFN-mediated gene targeting. Nature Methods, 9, 588.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hsu, P. D., & Zhang, F. (2012). Dissecting neural function using targeted genome engineering technologies. ACS Chemical Neuroscience, 3, 603–610.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827.PubMedPubMedCentralCrossRefGoogle Scholar
  21. IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  22. Jankele, R., & Svoboda, P. (2014). TAL effectors: Tools for DNA targeting. Briefings in Functional Genomics, 13, 409–419.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2014). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41, 188.CrossRefGoogle Scholar
  25. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14, 49.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93, 1156–1160.CrossRefGoogle Scholar
  29. Li, J. F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013). Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Liang, Z., Zhang, K., Chen, K., & Gao, C. (2013). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. Journal of Genetics and Genomics, 41, 63–68.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liu, G. H., Qu, J., Suzuki, K., Nivet, E., Li, M., Montserrat, N., et al. (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491, 603.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Luo, J. (2016). CRISPR/Cas9: From genome engineering to cancer drug discovery. Trends in Cancer, 2, 313–324.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mani, M., Kandavelou, K., Dy, F. J., Durai, S., & Chandrasegaran, S. (2005). Design, engineering, and characterization of zinc finger nucleases. Biochemical and Biophysical Research Communications, 335, 447–457.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Mohanta, T., Bashir, T., Hashem, A., Abd-Allah, E., & Bae, H. (2017). Genome editing tools in plants. Genes, 8, 399.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2016). Plant–pathogen interactions: Toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37, 229–237.PubMedCrossRefGoogle Scholar
  38. Niks, R. E., Qi, X., & Marcel, T. C. (2015). Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annual Review of Phytopathology, 53, 445–470.PubMedCrossRefGoogle Scholar
  39. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H. B., Lacy, M., Austin, M. J., Parker, J. E., & Sharma, S. B. (2000). Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Pyott, D. E., Sheehan, E., & Molnar, A. (2016). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Molecular Plant Pathology, 17, 1276–1288.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., et al. (2016). CRISPR/Cas9: A promising way to exploit genetic variation in plants. Biotechnology Letters, 38(12), 1991–2006.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32, 347.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Shan, Q., Wang, Y., Chen, K., Liang, Z., Li, J., Zhang, Y., et al. (2013a). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Molecular Plant, 6, 1365–1368.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013b). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Wendt, T., Holm, P. B., Starker, C. G., Christian, M., Voytas, D. F., Brinch-Pedersen, H., & Holme, I. B. (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology, 83, 279–285.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript profiling in host–pathogen interactions. Annual Review of Phytopathology, 45, 329–369.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR–Cas system. Molecular Plant, 6(6), 1975–1983.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Xiong, J. S., Ding, J., & Li, Y. (2015). Genome-editing technologies and their potential application in horticultural crop breeding. Horticulture Research, 2, 15019.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Xu, K. (2012). The next generation of biotechnology for apple improvement and beyond, the tale of TALENs and TALEs. NY Fruit Quart, 20, 17–20.Google Scholar
  52. Zaka, A., Grande, G., Coronejo, T., Quibod, I. L., Chen, C. W., Chang, S. J., Szurek, B., Arif, M., Cruz, C. V., & Oliva, R. (2018). Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS One, 13, e0203711.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Siddra Ijaz
    • 1
  • Imran Ul Haq
    • 2
  1. 1.Centre of Agricultural Biochemistry and Biotechnology (CABB)University of Agriculture FaisalabadFaisalabadPakistan
  2. 2.Department of Plant PathologyUniversity of Agriculture FaisalabadFaisalabadPakistan

Personalised recommendations