Advertisement

Fuzzy Logic Behavior of Quantum-Controlled Braitenberg Vehicle Agents

  • Rebeca Araripe Furtado Cunha
  • Naman Sharma
  • Zeno ToffanoEmail author
  • François Dubois
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11690)

Abstract

The behavior of agents represented by Braitenberg vehicles is investigated in the context of the quantum robot paradigm. The agents are processed through quantum circuits with fuzzy inputs, this permits to enlarge the behavioral possibilities and the associated decisions for these simple vehicles. The logical formulation Eigenlogic, using quantum logical observables as propositions and eigenvalues as truth values is applied in this investigation. Fuzzy logic arises naturally in this formulation when considering input states that are not eigenvectors of the logical observables, the fuzzy membership being the quantum mean value of the logical observable on the input state. Computer simulations permits visualization of complex behaviors resulting from the multiple combination of quantum control gates. This allows the detection of new Braitenberg vehicle behavior patterns related to identified emotions and linked to quantum-like effects.

Keywords

Quantum robots Fuzzy logic Quantum gates Braitenberg vehicles Emotion analysis 

References

  1. 1.
    Braitenberg, V.: Vehicles - Experiments in Synthetic Psychology. MIT Press, Cambridge (1986)Google Scholar
  2. 2.
    Benioff, P.: Quantum robots and environments as a first step towards a quantum mechanical description of systems that are aware of their environment and make decisions. Phys. Rev. A 58(2), 893–904 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Raghuvanshi, A., Fan, Y., Woyke, M., Perkowski, M.: Quantum robots for teenagers. In: 37th International Symposium on Multiple-Valued Logic ISMVL (2007)Google Scholar
  4. 4.
    Dubois, F., Toffano, Z.: Eigenlogic: a quantum view for multiple-valued and fuzzy systems. In: de Barros, J.A., Coecke, B., Pothos, E. (eds.) QI 2016. LNCS, vol. 10106, pp. 239–251. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52289-0_19CrossRefzbMATHGoogle Scholar
  5. 5.
    Kagan, E., Rybalov, A., Sela, A., Siegelmann, H.: Probabilistic control and swarm dynamics in mobile robots and ants. In: Biologically-Inspired Techniques for Knowledge Discovery and Data Mining, January, pp. 11–13 (2014)Google Scholar
  6. 6.
    Toffano, Z., Dubois, F.: Interpolating binary and multivalued logical quantum gates. In: Proceedings of the 4th International Electronic Conference on Entropy and Its Applications. MDPI Proceedings, vol. 2, no. 4, p. 152 (2018)CrossRefGoogle Scholar
  7. 7.
    Plutchik, R.: The nature of emotions. Am. Sci. 89(4), 334–350 (2001)CrossRefGoogle Scholar
  8. 8.
    Hannachi, M.S., Dong, F., Hirota, K.: Emulating quantum interference and quantum associative memory using fuzzy qubits. In: Proceedings of the IEEE International Conference on Computational Cybernetics ICCC 2007, pp. 39–45 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rebeca Araripe Furtado Cunha
    • 1
    • 2
  • Naman Sharma
    • 1
    • 3
  • Zeno Toffano
    • 1
    • 4
    Email author
  • François Dubois
    • 5
    • 6
  1. 1.CentraleSupélecUniversité ParisSaclayGif-sur-YvetteFrance
  2. 2.Federal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.National University of SingaporeSingaporeSingapore
  4. 4.Laboratoire des Signaux et Systèmes - CNRS (UMR8506)Gif-sur-YvetteFrance
  5. 5.Conservatoire National des Arts et MétiersParisFrance
  6. 6.Association Française de Science des Systèmes (AFSCET)ParisFrance

Personalised recommendations