Advertisement

Teaching Commonsense and Dynamic Knowledge to Service Robots

  • Stephan OpferEmail author
  • Stefan Jakob
  • Kurt Geihs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11876)

Abstract

Incorporating commonsense and coping with dynamic knowledge are key capabilities of service robots to efficiently interact with humans. In the presented system, we demonstrate how to equip service robots with commonsense knowledge and the dynamic reasoning capabilities of Answer Set Programming (ASP). We investigated the response of our system to basic human needs and evaluated the viability and scalability of the combination of the commonsense knowledge database ConceptNet 5 and the ASP solver Clingo. Our results show the flexibility and versatility of our approach. Further, we identified the need for research on scalability in case of environments that are abundant with objects.

Keywords

Commonsense reasoning Dynamic knowledge Answer Set Programming Service robots Cognitive Robotics Human-robot interaction 

References

  1. 1.
    Ayari, N., Chibani, A., Amirat, Y., Matson, E.T.: A novel approach based on commonsense knowledge representation and reasoning in open world for intelligent ambient assisted living services. In: IROS - IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6007–6013 (2015)Google Scholar
  2. 2.
    Beck, H.: Reviewing Justification-based Truth Maintenance Systems from a Logic Programming Perspective. Technical Report INFSYS RR-1843-17-02, Institute of Information Systems, TU Vienna, July 2017Google Scholar
  3. 3.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cognitive functions for service robots. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems AAMAS 2010, Richland, SC, vol. 1, pp. 989–996 (2010)Google Scholar
  5. 5.
    Erdem, E., Aker, E., Patoglu, V.: Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution. Intell. Serv. Robot. 5(4), 275–291 (2012)CrossRefGoogle Scholar
  6. 6.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo=ASP+Control: Extended Report. Technical report, Knowledge Processing and Information Systems (2014)Google Scholar
  7. 7.
    Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  8. 8.
    Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: on the limits of forgetting in answer set programming. In: European Conference on Artificial Intelligence (ECAI), pp. 957–965. Frontiers in Artificial Intelligence and Applications (2016)Google Scholar
  9. 9.
    Leite, J.: A bird’s-eye view of forgetting in answer-set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 10–22. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_2CrossRefGoogle Scholar
  10. 10.
    Lemaignan, S., Ros, R., Sisbot, E.A., Alami, R., Beetz, M.: Grounding the interaction: anchoring situated discourse in everyday human-robot interaction. Int. J. Soc. Robot. 4(2), 181–199 (2012)CrossRefGoogle Scholar
  11. 11.
    Lemaignan, S., Warnier, M., Sisbot, E.A., Clodic, A., Alami, R.: Artificial cognition for social human-robot interaction: an implementation. Artif. Intell. 247, 45–69 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Matamoros, M., Harbusch, K., Paulus, D.: From commands to goal-based dialogs: a roadmap to achieve natural language interaction in RoboCup@Home. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 217–229. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27544-0_18CrossRefGoogle Scholar
  13. 13.
    Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live together happily ever after? In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514. Springer, Heidelberg (2006).  https://doi.org/10.1007/11926078_36CrossRefGoogle Scholar
  14. 14.
    Opfer, S., Jakob, S., Geihs, K.: Reasoning for autonomous agents in dynamic domains: towards automatic satisfaction of the module property. In: van den Herik, J., Rocha, A.P., Filipe, J. (eds.) ICAART 2017. LNCS (LNAI), vol. 10839, pp. 22–47. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93581-2_2CrossRefGoogle Scholar
  15. 15.
    Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), pp. 4444–4451 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of KasselKasselGermany

Personalised recommendations