Knock on Wood: The Effects of Material Choice on the Perception of Social Robots

  • Sanne van WaverenEmail author
  • Linnéa Björklund
  • Elizabeth J. Carter
  • Iolanda Leite
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11876)


Many people who interact with robots in the near future will not have prior experience, and they are likely to intuitively form their first impressions of the robot based on its appearance. This paper explores the effects of component material on people’s perception of the robots in terms of social attributes and willingness to interact. Participants watched videos of three robots with different outer materials: wood, synthetic fur, and plastic. The results showed that people rated the perceived warmth of a plastic robot lower than a wooden or furry robot. Ratings of perceived competence and discomfort did not differ between the three robots.


Social robotics Robot material design Social perception 



This work was partially funded by a grant from the Swedish Research Council (reg. number 2017-05189).


  1. 1.
    Bernotat, J., Eyssel, F., Sachse, J.: Shape it – the influence of robot body shape on gender perception in robots. In: Kheddar, A., et al. (eds.) ICSR 2017. LNCS, vol. 10652, pp. 75–84. Springer, Cham (2017). Scholar
  2. 2.
    Bucci, P., et al.: Sketching cuddlebits: coupled prototyping of body and behaviour for an affective robot pet. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 3681–3692. ACM (2017)Google Scholar
  3. 3.
    Bucci, P., Zhang, L., Cang, X.L., MacLean, K.E.: Is it happy? Behavioural and narrative frame complexity impact perceptions of a simple furry robot’s emotions. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, p. 509. ACM (2018)Google Scholar
  4. 4.
    Carpinella, C.M., Wyman, A.B., Perez, M.A., Stroessner, S.J.: The robotic social attributes scale (RoSAS): development and validation. In: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction, pp. 254–262. ACM (2017)Google Scholar
  5. 5.
    Crippa, G., Rognoli, V., Levi, M.: Materials and emotions, a study on the relations between materials and emotions in industrial products. In: 8 International Conference on Design & Emotion: Out of Control, pp. 1–9. Central Saint Martins College of Arts & Design, London(2012)Google Scholar
  6. 6.
    DiSalvo, C.F., Gemperle, F., Forlizzi, J., Kiesler, S.: All robots are not created equal: the design and perception of humanoid robot heads. In: Proceedings of the 4th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 321–326. ACM (2002)Google Scholar
  7. 7.
    Eyssel, F., De Ruiter, L., Kuchenbrandt, D., Bobinger, S., Hegel, F.: ‘If you sound like me, you must be more human’: on the interplay of robot and user features on human-robot acceptance and anthropomorphism. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 125–126. IEEE (2012)Google Scholar
  8. 8.
    Fiske, S.T., Cuddy, A.J., Glick, P.: Universal dimensions of social cognition: warmth and competence. Trends Cogn. Sci. 11(2), 77–83 (2007)CrossRefGoogle Scholar
  9. 9.
    Green, R.D., MacDorman, K.F., Ho, C.C., Vasudevan, S.: Sensitivity to the proportions of faces that vary in human likeness. Comput. Hum. Behav. 24(5), 2456–2474 (2008)CrossRefGoogle Scholar
  10. 10.
    Hegel, F., Eyssel, F., Wrede, B.: The social robot ‘Flobi’: key concepts of industrial design. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 107–112. IEEE (2010)Google Scholar
  11. 11.
    Hoffmann, L., Krämer, N.C.: Investigating the effects of physical and virtual embodiment in task-oriented and conversational contexts. Int. J. Hum Comput Stud. 71(7–8), 763–774 (2013)CrossRefGoogle Scholar
  12. 12.
    Holoien, D.S., Fiske, S.T.: Downplaying positive impressions: compensation between warmth and competence in impression management. J. Exp. Soc. Psychol. 49(1), 33–41 (2013)CrossRefGoogle Scholar
  13. 13.
    Hu, Y., Hoffman, G.: Using skin texture change to design emotion expression in social robots. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 2–10. IEEE (2019)Google Scholar
  14. 14.
    Kalegina, A., Schroeder, G., Allchin, A., Berlin, K., Cakmak, M.: Characterizing the design space of rendered robot faces. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 96–104. ACM (2018)Google Scholar
  15. 15.
    Kennedy, J., Baxter, P., Belpaeme, T.: Comparing robot embodiments in a guided discovery learning interaction with children. Int. J. Soc. Robot. 7(2), 293–308 (2015)CrossRefGoogle Scholar
  16. 16.
    Kirilenko, A.P., Stepchenkova, S.: Inter-coder agreement in one-to-many classification: fuzzy kappa. PLoS ONE 11(3), e0149787 (2016)CrossRefGoogle Scholar
  17. 17.
    Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., Kircher, T.: Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS ONE 3(7), e2597 (2008)CrossRefGoogle Scholar
  18. 18.
    Lehmann, H., Sureshbabu, A.V., Parmiggiani, A., Metta, G.: Head and face design for a new humanoid service robot. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 382–391. Springer, Cham (2016). Scholar
  19. 19.
    Lucas, H., Poston, J., Yocum, N., Carlson, Z., Feil-Seifer, D.: Too big to be mistreated? Examining the role of robot size on perceptions of mistreatment. In: 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1071–1076. IEEE (2016)Google Scholar
  20. 20.
    Luria, M., Forlizzi, J., Hodgins, J.: The effects of eye design on the perception of social robots. In: 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1032–1037. IEEE (2018)Google Scholar
  21. 21.
    Mieczkowski, H., Liu, S.X., Hancock, J., Reeves, B.: Helping not hurting: applying the stereotype content model and bias map to social robotics. In: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 222–229. IEEE (2019)Google Scholar
  22. 22.
    Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 19(2), 98–100 (2012)CrossRefGoogle Scholar
  23. 23.
    Nakata, T., Sato, T., Mori, T., Mizoguchi, H.: Expression of emotion and intention by robot body movement. In: Proceedings of the 5th International Conference on Autonomous Systems (1998)Google Scholar
  24. 24.
    Peña, D., Tanaka, F.: Validation of the design of a robot to study the thermo-emotional expression. In: Ge, S.S., et al. (eds.) ICSR 2018. LNCS (LNAI), vol. 11357, pp. 75–85. Springer, Cham (2018). Scholar
  25. 25.
    Phillips, E., Zhao, X., Ullman, D., Malle, B.F.: What is human-like? Decomposing robots’ human-like appearance using the Anthropomorphic RoBOT (ABOT) database. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, pp. 105–113. ACM (2018)Google Scholar
  26. 26.
    Powers, A., Kiesler, S.: The advisor robot: tracing people’s mental model from a robot’s physical attributes. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, pp. 218–225. ACM (2006)Google Scholar
  27. 27.
    Premack, D., Woodruff, G.: Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1(4), 515–526 (1978)CrossRefGoogle Scholar
  28. 28.
    Rice, J., Kozak, R.A., Meitner, M.J., Cohen, D.H.: Appearance wood products and psychological well-being. Wood Fiber Sci. 38(4), 644–659 (2007)Google Scholar
  29. 29.
    Short, Y.F.E., Short, D., Mataric, M.J.: SPRITE: stewart platform robot for interactive tabletop engagement. Technical report, Department of Computer Science, University of Southern California (2017)Google Scholar
  30. 30.
    Wainer, J., Feil-Seifer, D.J., Shell, D.A., Mataric, M.J.: The role of physical embodiment in human-robot interaction. In: ROMAN 2006-The 15th IEEE International Symposium on Robot and Human Interactive Communication, pp. 117–122. IEEE (2006)Google Scholar
  31. 31.
    Willis, J., Todorov, A.: First impressions: making up your mind after a 100-ms exposure to a face. Psychol. Sci. 17(7), 592–598 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sanne van Waveren
    • 1
    Email author
  • Linnéa Björklund
    • 1
  • Elizabeth J. Carter
    • 1
  • Iolanda Leite
    • 1
  1. 1.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations