More Than You Expect: Priors Influence on the Adoption of Intentional Stance Toward Humanoid Robots

  • Jairo Perez-OsorioEmail author
  • Serena Marchesi
  • Davide Ghiglino
  • Melis Ince
  • Agnieszka Wykowska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11876)


Humans predict others’ behavior based on mental state inferences and expectations created on previous interactions. On the brink of the introduction of artificial agents in our social environment, the question of whether humans would use similar cognitive mechanisms to interact with these agents gains relevance. Recent research showed that people could indeed explain the behavior of a robot in mentalistic terms. However, there is scarce evidence regarding how expectations modulate the adoption of these mentalistic explanations. The present study aims at creating a questionnaire that measures expectations regarding the capabilities of the robot and testing whether these priors modulate the adoption of the intentional stance toward artificial agents. We found that individual expectations might influence the adoption of mentalistic explanations. After a show period of observation, participants with higher expectations tended to explain iCub’s behavior in mentalistic terms; meanwhile, participants with lower expectations maintained their mechanistic explanations of behavior. Our findings suggest that expectations about capabilities and purpose of the robot might modulate the adoption of intentional stance toward artificial agents.


Expectations Adoption of intentional stance iCub robot Priors Human-robot interaction 


  1. 1.
    Marchesi, S., Ghiglino, D., Ciardo, F., Perez-Osorio, J., Baykara, E., Wykowska, A.: Do we adopt the intentional stance toward humanoid robots? Front. Psychol. 10, 450 (2019)CrossRefGoogle Scholar
  2. 2.
    Dennett, D.C.: Intentional systems. J. Philos. 68(4), 87–106 (1971)CrossRefGoogle Scholar
  3. 3.
    Searle, J.R.: Construction of Social Reality (1995)Google Scholar
  4. 4.
    Malle, B.F.: Attribution theories: how people make sense of behavior. Theor. Soc. Psychol. 23, 72–95 (2011)Google Scholar
  5. 5.
    Waytz, A., Epley, N., Cacioppo, J.T.: Social cognition unbound: insights into anthropomorphism and dehumanization. Curr. Dir. Psychol. Sci. 19(1), 58–62 (2010)CrossRefGoogle Scholar
  6. 6.
    Krach, S., Hegel, F., Wrede, B., Sagerer, G., Binkofski, F., Kircher, T., et al.: Can machines think? Interaction and perspective taking with robots investigated via fMRI. PLoS One 3(7), e2597 (2008)CrossRefGoogle Scholar
  7. 7.
    Chaminade, T., et al.: How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Front. Hum. Neurosci. 6, 103 (2012)Google Scholar
  8. 8.
    Gazzola, V., Rizzolatti, G., Wicker, B., Keysers, C.: The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 35(4), 1674–1684 (2007)CrossRefGoogle Scholar
  9. 9.
    Oberman, L.M., McCleery, J.P., Ramachandran, V.S., Pineda, J.A.: EEG evidence for mirror neuron activity during the observation of human and robot actions: toward an analysis of the human qualities of interactive robots. Neurocomputing 70, 2194–2203 (2007)CrossRefGoogle Scholar
  10. 10.
    Wykowska, A., Chellali, R., Al-Amin, M.M., Müller, H.J.: Implications of robot actions for human perception. How do we represent actions of the observed robots? Int. J. Soc. Robot. 6(3), 357–366 (2014)CrossRefGoogle Scholar
  11. 11.
    Wykowska, A., Kajopoulos, J., Obando-Leitón, M., Chauhan, S.S., Cabibihan, J.J., Cheng, G.: Humans are well tuned to detecting agents among non-agents: examining the sensitivity of human perception to behavioral characteristics of intentional systems. Int. J. Soc. Robot. 7(5), 767–781 (2015)CrossRefGoogle Scholar
  12. 12.
    Wiese, E., Metta, G., Wykowska, A.: Robots as intentional agents: using neuroscientific methods to make robots appear more social. Front. Psychol. 8, 1663 (2017)CrossRefGoogle Scholar
  13. 13.
    Admoni, H., Srinivasa, S.: Predicting user intent through eye gaze for shared autonomy (2016)Google Scholar
  14. 14.
    Thellman, S., Silvervarg, A., Ziemke, T.: Folk-psychological interpretation of human vs. humanoid robot behavior: exploring the intentional stance toward robots. Front. Psychol. 8(Nov), 1–14 (2017)Google Scholar
  15. 15.
    Metta, G., et al.: The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Netw. 23(8–9), 1125–1134 (2010)CrossRefGoogle Scholar
  16. 16.
    Natale, L., Bartolozzi, C., Pucci, D., Wykowska, A., Metta, G.: iCub: the not-yet-finished story of building a robot child. Sci. Robot. 2(13), eaaq1026 (2017)CrossRefGoogle Scholar
  17. 17.
    Chaminade, T., et al.: Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures. PLoS ONE 5(7), e11577 (2010)CrossRefGoogle Scholar
  18. 18.
    Horstmann, A.C., Krämer, N.C.: Great expectations? Relation of previous experiences with social robots in real life or in the media and expectancies based on qualitative and quantitative assessment. Front. Psychol. 10, 939 (2019)CrossRefGoogle Scholar
  19. 19.
    Dautenhahn, K., Woods, S., Kaouri, C., Walters, M.L., Koay, K.L., Werry, I.: What is a robot companion - friend, assistant or butler? In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2005)Google Scholar
  20. 20.
    Ray, C., Mondada, F., Siegwart, R.: What do people expect from robots? In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2008)Google Scholar
  21. 21.
    Goetz, J., Kiesler, S., Powers, A.: Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (2003)Google Scholar
  22. 22.
    Arras, K.O., Cerqui, D.: Do we want to share our lives and bodies with robots? A 2000-people survey (2005)Google Scholar
  23. 23.
    Syrdal, D.S., Dautenhahn, K., Koay, K.L., Walters, M.L.: The negative attitudes towards robots scale and reactions to robot behaviour in a live human-robot interaction study. Adapt. Emergent Behav. Complex Syst. (2009)Google Scholar
  24. 24.
    Nomura, T.T., Syrdal, D.S., Dautenhahn, K.: Differences on social acceptance of humanoid robots between Japan and the UK. In: Salem, M., Weiss, A., Baxter, P., Dautenhahn, K. (eds.) Proceedings 4th International Symposium on New Frontiers in Human-Robot Interaction, pp. 115–120. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB) (2015)Google Scholar
  25. 25.
    Carpinella, C.M., Wyman, A.B., Perez, M.A., Stroessner, S.J.: The robotic social attributes scale (RoSAS). In: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction - HRI 2017 (2017)Google Scholar
  26. 26.
    Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 1(1), 71–81 (2009)CrossRefGoogle Scholar
  27. 27.
    John, O.P., Srivastava, S.: Big five inventory (BFI). In: Handbook of Personality Second Edition: Theory and Research (1999)Google Scholar
  28. 28.
    Roncone, A., Pattacini, U., Metta, G., Natale, L.: A cartesian 6-DoF gaze controller for humanoid robots. In: Proceedings of Robotics: Science and Systems (2016)Google Scholar
  29. 29.
    Mathôt, S., Schreij, D., Theeuwes, J.: OpenSesame: an open-source, graphical experiment builder for the social sciences. Behav. Res. Methods 44(2), 314–324 (2012)CrossRefGoogle Scholar
  30. 30.
    Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. Int. J. Adv. Robot. Syst. 3(1), 8 (2006)CrossRefGoogle Scholar
  31. 31.
    Frith, C.D., Frith, U.: How we predict what other people are going to do. Brain Res. 1079(1), 36–46 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jairo Perez-Osorio
    • 1
    Email author
  • Serena Marchesi
    • 1
  • Davide Ghiglino
    • 1
  • Melis Ince
    • 2
  • Agnieszka Wykowska
    • 1
  1. 1.Instituto Italiano di TecnologíaGenoaItaly
  2. 2.Universitá di TrentoRoveretoItaly

Personalised recommendations