Advertisement

sUAS Data Integration for Urban Spatial Analysis

  • Tony H. Grubesic
  • Jake R. Nelson
Chapter

Abstract

Using sUAS data for urban spatial analysis poses a variety of challenges. From basic, short-term concerns such as formatting, portability, and compatibility with geographic information systems (GIS) to more complex tasks associated with incorporating ground control points (GCPs) and adding supplementary geographic base files for analysis. The purpose of this chapter is to highlight the most efficient strategies for integrating sUAS data with other sources of urban information, including census and cadastral data, as well as a variety of urban/environmental databases typically available for metropolitan locales.

Keywords

Representation Attributes Data models Vector Raster Geodesy Projections Ground control points Global positioning system Real-time kinetics Post-processed kinematics Data integration Census ZIP codes Cadastral Amenities 

References

  1. Bernstein, M. J., Wiek, A., Brundiers, K., Pearson, K., Minowitz, A., Kay, B., & Golub, A. (2016). Mitigating urban sprawl effects: A collaborative tree and shade intervention in Phoenix, Arizona, USA. Local Environment, 21(4), 414–431.CrossRefGoogle Scholar
  2. Bishop, W., & Grubesic, T. H. (2016). Geographic Information. Springer International.Google Scholar
  3. Brunsdon, C., & Singleton, A. (Eds.). (2015). Geocomputation: A practical primer. Thousand Oaks: Sage.Google Scholar
  4. Census Bureau [United States]. (2019). About the 2010 census tiger/line shapefiles. Retrieved March 16, 2019, from https://tinyurl.com/y3rgot9d
  5. Chang, K. T. (2008). Introduction to geographic information systems (Vol. 4). Boston: McGraw-Hill.Google Scholar
  6. Chen, W. Y., & JIM, C. Y. (2010). Amenities and disamenities: A hedonic analysis of the heterogeneous urban landscape in Shenzhen (China). Geographical Journal, 176(3), 227–240.Google Scholar
  7. Chrisman, N. R. (1997). Exploring geographic information systems. New York: Wiley.Google Scholar
  8. Corcoran, J., Chhetri, P., & Stimson, R. (2009). Using circular statistics to explore the geography of the journey to work. Papers in Regional Science, 88(1), 119–132.CrossRefGoogle Scholar
  9. Couclelis, H. (1992). People manipulate objects (but cultivate fields): Beyond the raster-vector debate in GIS. In Theories and methods of spatio-temporal reasoning in geographic space (pp. 65–77). Berlin: Springer.CrossRefGoogle Scholar
  10. Djokic, D., & Maidment, D. R. (1991). Terrain analysis for urban stormwater modelling. Hydrological Processes, 5(1), 115–124.CrossRefGoogle Scholar
  11. Estes, C. (2018). Can phoenix’s sunnyslope community become a tourist destination? KJZZ. Retrieved January 25, 2019, from https://tinyurl.com/ybcgs5j6
  12. FEMA [Federal Emergency Management Agency]. (2019). FEMA flood map service center. Retrieved from https://msc.fema.gov/portal/home
  13. Fisher, P. (1997). The pixel: A snare and a delusion. International Journal of Remote Sensing, 18(3):679–685.CrossRefGoogle Scholar
  14. Forlani, G., Dall’Asta, E., Diotri, F., Cella, U. M. D., Roncella, R., & Santise, M. (2018). Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sensing, 10(2), 311.CrossRefGoogle Scholar
  15. Gaffney, S. H., Curriero, F. C., Strickland, P. T., Glass, G. E., Helzlsouer, K. J., & Breysse, P. N. (2005). Influence of geographic location in modeling blood pesticide levels in a community surrounding a US Environmental Protection Agency Superfund site. Environmental Health Perspectives, 113(12), 1712–1716.CrossRefGoogle Scholar
  16. Goodchild, M. F. (1992). Geographical data modeling. Computers & Geosciences, 18(4), 401–408.CrossRefGoogle Scholar
  17. Goodchild, M. F., Yuan, M., & Cova, T. J. (2007). Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 21(3), 239–260.CrossRefGoogle Scholar
  18. Grubesic, T. H. (2008). Zip codes and spatial analysis: Problems and prospects. Socio-Economic Planning Sciences, 42(2), 129–149.CrossRefGoogle Scholar
  19. Grubesic, T. H., & Matisziw, T. C. (2006). On the use of ZIP codes and ZIP code tabulation areas (ZCTAs) for the spatial analysis of epidemiological data. International Journal of Health Geographics, 5(1), 58.CrossRefGoogle Scholar
  20. Helderop, E., & Grubesic, T. H. (2019). Streets, storm surge, and the frailty of urban transport systems: A grid-based approach for identifying informal street network connections to facilitate mobility. Transportation Research Part D: Transport and Environment, 77, 337–351.  https://doi.org/10.1016/j.trd.2018.12.024.CrossRefGoogle Scholar
  21. Kimmerling, A. J., Buckley, A. R., Muehrcke, P. C., & Muehrcke, J. O. (2011). Map use: Reading, analysis, interpretation (7th ed.). Redlands, CA: Esri Press Academic.Google Scholar
  22. Krygier, J., & Wood, D. (2016). Making maps: A visual guide to map design for GIS. New York: Guilford Publications.Google Scholar
  23. Landry, S. M., & Chakraborty, J. (2009). Street trees and equity: Evaluating the spatial distribution of an urban amenity. Environment and Planning A, 41(11), 2651–2670.CrossRefGoogle Scholar
  24. Li, X., Li, W., Middel, A., Harlan, S. L., Brazel, A. J., & Turner Ii, B. L. (2016). Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sensing of Environment, 174, 233–243.CrossRefGoogle Scholar
  25. Liu, Y., Goodchild, M. F., Guo, Q., Tian, Y., & Wu, L. (2008). Towards a General Field model and its order in GIS. International Journal of Geographical Information Science, 22(6), 623–643.CrossRefGoogle Scholar
  26. Llausàs, A., Hof, A., Wolf, N., Saurí, D., & Siegmund, A. (2018). Applicability of cadastral data to support the estimation of water use in private swimming pools. Environment and Planning B: Urban Analytics and City Science, 46(6), 1165–1181.Google Scholar
  27. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2005). Geographic information science and systems. Chichester, UK: Wiley.Google Scholar
  28. Martín-Consuegra, F., de Frutos, F., Oteiza, I., & Agustín, H. A. (2018). Use of cadastral data to assess urban scale building energy loss. Application to a deprived quarter in Madrid. Energy and Buildings, 171, 50–63.CrossRefGoogle Scholar
  29. McDonnell, R., & Kemp, K. (1995). International GIS dictionary. John Wiley & Sons.Google Scholar
  30. Merrian Webster [MW]. (2019). Kinematics. Retrieved February 12, 2019, from https://www.merriam-webster.com/dictionary/kinematicsGoogle Scholar
  31. Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16–28.CrossRefGoogle Scholar
  32. Middel, A., Chhetri, N., & Quay, R. (2015). Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1), 178–186.CrossRefGoogle Scholar
  33. Murray, A. T., & Grubesic, T. H. (2012). Spatial optimization and geographic uncertainty: Implications for sex offender management strategies. In M. Johnson (Ed.), Community-based operations research (pp. 121–142). New York: Springer.CrossRefGoogle Scholar
  34. Murray, A. T., Wei, R., & Grubesic, T. H. (2014). An approach for examining alternatives attributable to locational uncertainty. Environment and Planning B: Planning and Design, 41(1), 93–109.CrossRefGoogle Scholar
  35. Petrasova, A., Mitasova, H., Petras, V., & Jeziorska, J. (2017). Fusion of high-resolution DEMs for water flow modeling. Open Geospatial Data, Software and Standards, 2(1), 6.CrossRefGoogle Scholar
  36. Pix4D. (2017). Do RTK/PPK drones give you better results than GCPs?. Retrieved May 5, 2019, from https://tinyurl.com/yxog8vmk
  37. Pix4D. (2019). Pix4D mapper. Retrieved June 27, 2019, from https://www.pix4d.com/
  38. Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimmerling, A. J., & Guptill, S. C. (1995). Elements of cartography (6th ed.). New York: Wiley.Google Scholar
  39. Sensefly. (2017). eBee RTK Accuracy Assessment. Retrieved February 13, 2019, from https://tinyurl.com/ukotp2kGoogle Scholar
  40. Tokarczyk, P., Leitão, J. P., Rieckermann, J., & Blumensaat, F. (2015). High-quality observation of surface imperviousness for urban runoff modelling using UAV imagery. Hydrology and Earth System Sciences, 19(10), 4215–4228.CrossRefGoogle Scholar
  41. Trammell, S. (2019). Cadastral GIS of Real Value. Esri. Retrieved March 12, 2019, from https://tinyurl.com/qn8o9ryGoogle Scholar
  42. United States Census Bureau. (2019). ZIP code tabulation areas (ZCTAs). Retrieved March 12, 2019, from https://tinyurl.com/y3v8ncqz
  43. Unwin, D. J. (1995). Geographical information systems and the problem of ‘error and uncertainty’. Progress in Human Geography, 19(4), 549–558.CrossRefGoogle Scholar
  44. Wu, J. (2006). Environmental amenities, urban sprawl, and community characteristics. Journal of Environmental Economics and Management, 52(2), 527–547.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tony H. Grubesic
    • 1
  • Jake R. Nelson
    • 1
  1. 1.Geoinformatics and Policy Analytics Lab (GPAL), School of InformationUniversity of Texas at AustinAustinUSA

Personalised recommendations