Advertisement

Adverse Cutaneous Reactions to Chemotherapeutic Agents

  • Mai P. HoangEmail author
  • Daniela Kroshinsky
Chapter
  • 96 Downloads

Abstract

As major advancements in cancer treatment are being made, adverse effects including cutaneous ones are increased in parallel. The cutaneous adverse events result in declined quality of life as well as increased cost of health care. Awareness of the spectrum of these adverse cutaneous reaction patterns is important since they can change the treatment strategy. In this chapter the common cutaneous adverse reactions associated with chemotherapy, tumor necrosis factor-α inhibitor, granulocyte-macrophage colony-stimulating factor, epidermal growth factor inhibitor, kinase inhibitors, immune checkpoint blockade, and other targeted therapies will be discussed.

Keywords

Chemotherapy Tumor necrosis factor-α inhibitor Granulocyte-macrophage colony-stimulating factor Epidermal growth factor inhibitor Kinase inhibitors Immune checkpoint blockade 

References

  1. 1.
    Drilon A, Eaton AA, Schindler K, et al. Beyond the dose-limiting toxicity period: dermatologic adverse events of patients on phase 1 trials of the cancer therapeutics evaluation program. Cancer. 2016;122(8):1228–37.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Rosen AC, Case EC, Dusza SW, et al. Impact of dermatologic adverse events on quality of life in 283 cancer patients: a questionnaire study in a dermatology referral clinic. Am J Clin Dermatol. 2013;14(4):327–33.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Borovicka JH, Calahan C, Gandhi M, et al. Economic burden of dermatologic adverse events induced by molecularly targeted cancer agents. Arch Dermatol. 2011;147(12):1403–9.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Burgdorf WH, Gilmore WA, Ganick RG. Peculiar acral erythema secondary to high-dose chemotherapy for acute myelogenous leukemia. Ann Intern Med. 1982;97(1):61–2.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lipworth AD, Robert C, Zhu AX. Hand-foot syndrome (hand-foot skin reaction, palmar-plantar erythrodysesthesia): focus on sorafenib and sunitinib. Oncology. 2009;77(5):257–71.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Degen A, Alter M, Schenck F, et al. The hand-foot-syndrome associated with medical tumor therapy – classification and management. J Dtsch Dermatol Ges. 2010;8(9):652–61.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Herms F, Franck N, Kramkimel N, et al. Neutrophilic eccrine hidradenitis in two patients with BRAF inhibitors: a new cutaneous adverse effect. Br J Dermatol. 2017;176(6):1645–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Harrist TJ, Fine JD, Berman RS, Murphy GF, Mihm MC Jr. Neutrophilic eccrine hidradenitis. A distinctive type of neutrophilic dermatosis associated with myelogenous leukemia and chemotherapy. Arch Dermatol. 1982;118(4):263–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Brehler R, Reimann S, Bonsmann G, Metze D. Neutrophilic hidradenitis induced by chemotherapy involves eccrine and apocrine glands. Am J Dermatopathol. 1997;19(1):73–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Simon M Jr, Cremer H, von den Driesch P. Idiopathic recurrent palmoplantar hidradenitis in children. Report of 22 cases. Arch Dermatol. 1998;134(1):76–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Abbas O, Bhawan J. Syringometaplasia: variants and underlying mechanisms. Int J Dermatol. 2016;55(2):142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Martorell-Calatayud A, Sanmartin O, Botella-Estrada R, et al. Chemotherapy-related bilateral dermatitis associated with eccrine squamous syringometaplasia: reappraisal of epidemiological, clinical, and pathological features. J Am Acad Dermatol. 2011;64(6):1092–103.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Gallo E, Llamas-Velasco M, Navarro R, Fraga J, Garcia-Diez A. Eccrine squamous syringometaplasia secondary to cutaneous extravasation of docetaxel: report of three cases. J Cutan Pathol. 2013;40(3):326–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brown G, Wang E, Leon A, et al. Tumor necrosis factor-alpha inhibitor-induced psoriasis: systematic review of clinical features, histopathological findings, and management experience. J Am Acad Dermatol. 2017;76(2):334–41.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ko JM, Gottlieb AB, Kerbleski JF. Induction and exacerbation of psoriasis with TNF-blockade therapy: a review and analysis of 127 cases. J Dermatolog Treat. 2009;20(2):100–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mohan N, Edwards ET, Cupps TR, Slifman N, Lee JH, Siegel JN, Braun MM. Leukocytoclastic vasculitis associated with tumor necrosis factor-blocking agents. J Rheumatol. 2004;31(10):1955–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Deng A, Harvey V, Sina B, et al. Interstitial granulomatous dermatitis associated with the use of tumor necrosis factor alpha inhibitors. Arch Dermatol. 2006;142(2):198–202.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Moustou AE, Matekovits A, Dessinioti C, Antoniou C, Sfikakis PP, Stratigos AJ. Cutaneous side effects of anti-tumor necrosis factor biologic therapy: a clinical review. J Am Acad Dermatol. 2009;61(3):486–504.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Laga AC, Vleugels RA, Qureshi AA, Velazquez EF. Histopathologic spectrum of psoriasiform skin reactions associated with tumor necrosis factor-alpha inhibitor therapy. A study of 16 biopsies. Am J Dermatopathol. 2010;32(6):568–73.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sieff CA, Emerson SG, Donahue RE, Nathan DG, Wang EA, Wong GC, Clark SC. Human recombinant granulocyte-macrophage colony-stimulating factor: a multilineage hematopoietin. Science. 1985;230(4730):1171–3.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    White JM, Mufti GJ, Salisbury JR, du Vivier AW. Cutaneous manifestations of granulocyte colony-stimulating factor. Clin Exp Dermatol. 2006;31(2):206–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Scott GA. Report of three cases of cutaneous reactions to granulocyte macrophage-colony-stimulating factor and a review of the literature. Am J Dermatopathol. 1995;17(2):107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ferran M, Gallardo F, Salar A, Iglesias M, Barranco C, Pujol RM. Granulomatous dermatitis with enlarged histiocytes: a characteristic pattern of granulocyte colony-stimulating factor. Report of two cases and review of the literature. Dermatology. 2006;212:188–93.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Alvarez-Ruiz S, Penas PF, Fernandez-Herrera J, Sanchez-Perez J, Fraga J, Garcia-Diez A. Maculopapular eruption with enlarged macrophages in eight patients receiving G-CSF or GM-CSF. J Eur Acad Dermatol Venereol. 2004;18(3):310–3.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mehregan DR, Fransway AF, Edmonson JH, Leiferman KM. Cutaneous reactions to granulocyte-monocyte colony stimulating factor. Arch Dermatol. 1992;128(8):1055–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Agero AL, Dusza SW, Benvenuto-Andrade C, Busam KJ, Myskowski P, Halpern AC. Dermatologic side effects associated with the epidermal growth factor receptor inhibitors. J Am Acad Dermatol. 2006;55(4):657–70.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Segaert S, Van Cutsem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann Oncol. 2005;16(9):1425–33.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Liu HB, Wu Y, Lu TF, et al. Skin rash could predict the response to EGFR tyrosine kinase inhibitor and the prognosis for patients with non-small cell lung cancer: a systematic review and meta-analysis. PLoS One. 2013;8(1):e55128.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Braden RL, Anadkat MJ. EGFR inhibitor-induced skin reactions: differentiating acneiform rash from superimposed bacterial infections. Support Care Cancer. 2016;24(9):3943–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Carlos G, Anforth R, Clements A, et al. Cutaneous toxic effects of BRAF inhibitors alone and in combination with MEK inhibitors for metastatic melanoma. JAMA Dermatol. 2015;151(10):1103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dika E, Patrizi A, Ribero S, et al. Hair and nail adverse events during treatment with targeted therapies for metastatic melanoma. Eur J Dermatol. 2016;26(3):232–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee WJ, Lee JL, Chang SE, Lee MW, et al. Cutaneous adverse effects in patients treated with the multitargeted kinase inhibitors sorafenib and sunitinib. Br J Dermatol. 2009;161(5):1045–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Nagore E, Insa A, Sanmartin O. Antineoplastic therapy-induced palmar plantar erythrodysesthesia (‘hand-foot’) syndrome. Incidence, recognition and management. Am J Clin Dermatol. 2000;1(4):225–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Beard JS, Smith KJ, Skelton HG. Combination chemotherapy with 5-fluorouracil, folinic acid, and alpha-interferon producing histologic features of graft-versus-host disease. J Am Acad Dermatol. 1993;29(2 Pt 2):325–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Lacouture ME, Reilly LM, Gerami P, Guitart J. Hand foot skin reaction in cancer patients treated with the multikinase inhibitors sorafenib and sunitinib. Ann Oncol. 2008;19(11):1955–61.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Chu D, Lacouture ME, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: a systematic review and meta-analysis. Acta Oncol. 2008;47(2):176–86.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reyes-Habito CM, Roh EK. Cutaneous reactions to chemotherapeutic drugs and targeted therapies for cancer. Part II. Targeted therapies. J Am Acad Dermatol. 2014;71(2):217.e1–11.CrossRefGoogle Scholar
  39. 39.
    Choy B, Chou S, Anforth R, Fernandez-Penas P. Panniculitis in patients treated with BRAF inhibitors: a case series. Am J Dermatopathol. 2014;36(6):493–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Curry JL, Tetzlaff MT, Nicholson K, et al. Histological features associated with vemurafenib-induced skin toxicities: examination of 141 cutaneous lesions biopsied during therapy. Am J Dermatopathol. 2014;36(7):557–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Chu EY, Wanat KA, Miller CJ, et al. Diverse cutaneous side effects associated with BRAF inhibitor therapy: a clinicopathologic study. J Am Acad Dermatol. 2012;67(6):1265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mochel MC, Hammond MR, Frederick DT, et al. Melanocytic nevi excised during B-Raf proto-oncogene inhibitor therapy: a study of nineteen lesions from ten patients. J Am Acad Dermatol. 2015;73(3):491–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Balagula Y, Barth Huston K, Busam KJ, et al. Dermatologic side effects associated with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886). Investig New Drugs. 2011;29(5):1114–21.CrossRefGoogle Scholar
  44. 44.
    Long GV, Stroyakovskiy D, Gogas H, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877–88.PubMedCrossRefGoogle Scholar
  45. 45.
    Sanlorenzo M, Choudhry A, Vujic I, et al. Comparative profile of cutaneous adverse events: BRAF/MEK inhibitor combination therapy versus BRAF monotherapy in melanoma. J Am Acad Dermatol. 2014;71(6):1102–9.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Desar IM, Bovenschen HJ, Timmer-Bonte AJ, et al. Case studies showing clinical signs and management of cutaneous toxicity of the MEK1/2 inhibitor AZD6244 (ARRY-142886) in patients with solid tumors. Acta Oncol. 2010;49(1):110–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Negulescu M, Deilhes F, Sibaud V, et al. Panniculitis associated with MEK inhibitor therapy: an uncommon adverse effect. Case Rep Dermatol. 2017;9(1):80–5.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Robert C, Schachter J, Long GV, et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Curry JL, Tetzlaff MT, Nagarajan P, et al. Diverse types of dermatologic toxicities from immune checkpoint blockade therapy. J Cutan Pathol. 2017;44(2):158–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaunitz GJ, Loss M, Rizvi H, et al. Cutaneous eruptions in patients receiving immune checkpoint blockade: clinicopathologic analysis of the nonlichenoid histologic pattern. Am J Surg Pathol. 2017;41(10):1381–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Minkis K, Garden BC, Wu S, et al. The risk of rash associated with ipilimumab in patients with cancer: a systematic review of the literature and meta-analysis. J Am Acad Dermatol. 2013;69(3):e121–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Nordlund JJ, Kirkwood JM, Forget BM, et al. Vitiligo in patients with metastatic melanoma: a good prognostic sign. J Am Acad Dermatol. 1983;9(5):689–96.PubMedCrossRefGoogle Scholar
  53. 53.
    Voskens CJ, Goldinger SM, Loquai C, et al. The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network. PLoS One. 2013;8(1):e53745.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sheik Ali S, Goddard AL, Luke JJ, et al. Drug-associated dermatomyositis following ipilimumab therapy: a novel immune-mediated adverse event associated with cytotoxic T-lymphocyte antigen 4 blockade. JAMA Dermatol. 2015;151(2):195–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tetzlaff MT, Nagarajan P, Chon S, et al. Lichenoid dermatologic toxicity from immune checkpoint blockade therapy: a detailed examination of the clinicopathologic features. Am J Dermatopathol. 2017;39(2):121–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Jour G, Glitza I, Ellis RM, et al. Autoimmune dermatologic toxicities from immune checkpoint blockade with anti-PD-1 antibody therapy: a report on bullous skin eruptions. J Cutan Pathol. 2016;43(8):688–96.PubMedCrossRefGoogle Scholar
  58. 58.
    Tefzlaff MT, Nelson KC, Diab A, et al. Granulomatous/sarcoid-like lesions associated with checkpoint inhibitors: a marker of therapy response in a subset of melanoma patients. J Immunother Cancer. 2018;6(1):14.  https://doi.org/10.1186/s40425-018-0323-0.CrossRefGoogle Scholar
  59. 59.
    Wu J, Kwong BY, Martires KJ, Rieger KE, Chung WH, Iyer GV, Lacouture ME. Granuloma annulare associated with immune checkpoint inhibitors. J Eur Acad Dermatol Venereol. 2018;32(4):e124–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Kwak E, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shaw AT, Ou SH, Bang YJ, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Camidge DR, Bang YK, Kwak E, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13(10):1011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Fujita S, Masago K, Katakami N, Yatabe Y. Transformation to SCLC after treatment with the ALK inhibitor Alectinib. J Thorac Oncol. 2016;11(6):e67–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Sawamura S, Kajihara I, Ichihara A, et al. Crizotinib-associated erythema multiforme in a lung cancer patient. Drug Discov Ther. 2015;9(2):142–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Oser MG, Janne PA. A severe photosensitivity dermatitis caused by crizotinib. J Thorac Oncol. 2014;9(7):e51–3.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yang S, Wu L, Li X, Huang J, Zhong J, Chen X. Crizotinib-associated toxic epidermal necrolysis in an ALK-positive advanced NSCLC patient. Mol Clin Oncol. 2018;8(3):457–9.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Gomez-Fernandez C, Garden BC, Wu S, et al. The risk of skin rash and stomatitis with the mammalian target of rapamycin inhibitor temsirolimus: a systematic review of the literature and meta-analysis. Eur J Cancer. 2012;48(3):340–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Balagula Y, Rosen A, Tan BH, et al. Clinical and histopathologic characteristics of rash in cancer patients treated with mammalian target of rapamycin inhibitors. Cancer. 2012;118(20):5078–83.PubMedCrossRefGoogle Scholar
  70. 70.
    Atkins MB, Hidalgo M, Stadler WM, et al. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol. 2004;22(5):909–18.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mahe E, Morelon E, Lechaton S, et al. Cutaneous adverse events in renal transplant recipients receiving sirolimus-based therapy. Transplantation. 2005;79(4):476–82.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Atzori L, Conti B, Zucca M, Pau M. Bullous pemphigoid induced by m-TOR inhibitors in renal transplant recipients. J Eur Acad Dermatol Venereol. 2015;29(8):1626–30.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Campistol JM, de Fijter JW, Flechner SM, et al. mTOR inhibitor-associated dermatologic and mucosal problems. Clin Transplant. 2010;24(2):149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8(10):743–54.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lacouture ME, Dreno B, Ascierto PA, et al. Characterization and management of hedgehog pathway inhibitor-related adverse events in patients with advanced basal cell carcinoma. Oncologist. 2016;21(10):1218–29.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Alkeraye S, Maire C, Desmedt E, Templier C, Mortier L. Persistent alopecia induced by vismodegib. Br J Dermatol. 2015;172(6):1671–2.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Thomas CL, Arasaratnam M, Carlos G, et al. Drug reaction with eosinophilia and systemic symptoms in metastatic basal cell carcinoma treated with vismodegib. Australas J Dermatol. 2017;58(1):69–70.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lam T, Wolverton SE, Davis CL. Drug hypersensitivity syndrome in a patient receiving vismodegib. J Am Acad Dermatol. 2014;70(3):e65–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Reinders MG, Brinkhuizen T, Soetekouw PM, Kelleners-Smeets NW, Hamid MA, Mosterd K. Epidermal cyst formation and hyperkeratosis in a patient treated with vismodegib for locally advanced basal cell carcinoma. Acta Derm Venereol. 2015;95(5):618–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Richey JD, Graham TA, Katona I, Travers JB. Development of trichodysplasia spinulosa: case report of a patient with Gorlin syndrome treated with vismodegib. JAMA Dermatol. 2014;150(9):1016–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Aasi S, Silkiss R, Tang JY, et al. New onset of keratoacanthomas after vismodegib treatment for locally advanced basal cell carcinomas: a report of 2 cases. JAMA Dermatol. 2013;149(2):242–3.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Iarrobino A, Messina JL, Kudchadkar R, Sondak VK. Emergence of a squamous cell carcinoma phenotype following treatment of basal cell carcinoma. J Am Acad Dermatol. 2013;69(1):e33–4.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med. 2012;366(21):2008–16.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Nunes AA, da Silva AS, Souza KM, et al. Rituximab, fludarabine, and cyclophosphamide versus fludarabine and cyclophosphamide for treatment of chronic lymphocytic leukemia: a systemic review with meta-analysis. Crit Rev Oncol Hematol. 2015;94(3):261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Errante D, Bernardi D, Bianco A, et al. Rituximab-related urticarial reaction in a patient treated for primary cutaneous B-cell lymphoma. Ann Oncol. 2006;17(11):1720–1.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Winkler U, Jensen M, Manzke O, et al. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood. 1999;94(7):2217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hadjinicolaou AV, Nisar MK, Parfrey H, et al. Non-infectious pulmonary toxicity of rituximab: a systematic review. Rheumatology. 2012;51(4):653–62.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lee L, Kukreti V. Rituximab-induced coronary vasospasm. Case Rep Hematol. 2012;2012:984986.  https://doi.org/10.1155/2012/984986.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Ingen-Housz-Oro S, Ortonne N, Chosidow O. Rituximab-related urticarial reaction overlying primary cutaneous follicle Centre lymphoma: histological appearance and pathophysiological hypotheses. J Eur Acad Dermatol Venereol. 2014;28(7):976–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kim MJ, Kim HO, Kim HY, Park YM. Rituximab-induced vasculitis: a case report and review of the medical published work. J Dermatol. 2009;36(5):284–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lowndes S, Darby A, Mead G, Lister A. Stevens-Johnson syndrome after treatment with rituximab. Ann Oncol. 2002;13(12):1948–50.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Guidelli GM, Fioravanti A, Rubegni P, Feci L. Induced psoriasis after rituximab therapy for rheumatoid arthritis: a case report and review of the literature. Rheumatol Int. 2013;33(11):2927–30.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Robak E, Biernat W, Krykowski E, et al. Merkel cell carcinoma in a patient with B-cell chronic lymphocytic leukemia treated with cladribine and rituximab. Leuk Lymphoma. 2005;46(6):909–14.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fogarty GB, Bayne M, Bedford P, et al. Three cases of activation of cutaneous squamous-cell carcinoma during treatment with prolonged administration of rituximab. Clin Oncol (R Coll Radiol). 2006;18(2):155–6.CrossRefGoogle Scholar
  95. 95.
    Gold R, Radue EW, Giovannoni G, et al. Safety and efficacy of daclizumab in relapsing-remitting multiple sclerosis: 3-year results from the SELECTED open-label extension study. BMC Neurol. 2016;16:117.  https://doi.org/10.1186/s12883-016-0635-y.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Cortese I, Ohayon J, Fenton K, et al. Cutaneous adverse events in multiple sclerosis patients treated with daclizumab. Neurology. 2016;86(9):847–55.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Berkowitz JL, Janik JE, Stewart DM, et al. Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin Immunol. 2014;155(2):176–87.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Krueger JG, Kircik L, Hougeir F, et al. Cutaneous adverse events in the randomized, double-blind, active-comparator DECIDE study of daclizumab high-yield versus intramuscular interferon beta-1a relapsing-remitting multiple sclerosis. Adv Ther. 2016;33(7):1231–45.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130(25):2709–17.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fanale MA, Horwitz SM, Forero-Torres A, et al. Brentuximab vedotin in the front-line treatment of patients with CD30(+) peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Del Principe MI, Sconocchia G, Buccisano F, et al. Extensive toxic epidermal necrolysis following brentuximab vedotin administration. Ann Hematol. 2015;94(2):355–6.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    De Masson A, Guitera P, Brice P, et al. Long-term efficacy and safety of alemtuzumab in advanced primary cutaneous T-cell lymphomas. Br J Dermatol. 2014;170(3):720–4.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lenihan DJ, Alencar AJ, Yang D, Kurzrock R, Keating MJ, Duvic M. Cardiac toxicity of alemtuzumab in patients with mycosis fungoides/Sézary syndrome. Blood. 2004;104(3):655–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Jawed SI, Busam K, Wang X, Horwitz S, Querfeld C. Cutaneous hemophagocytosis after alemtuzumab injection in a patient with Sezary syndrome. JAMA Dermatol. 2014;150(9):1021–3.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Karlsson C, Norin S, Kimby E, et al. Alemtuzumab as first-line therapy for B-cell chronic lymphocytic leukemia: long-term follow-up of clinical effects, infectious complications and risk of Richter transformation. Leukemia. 2006;20(12):2204–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hoang MP, Kroshinsky D. Cutaneous reactions to novel therapeutics. Am J Dermatopathol. 2012;34(7):679–87.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Quesada JR, Gutterman JU. Psoriasis and alpha-interferon. Lancet. 1986;1(8496):1466–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Shen Y, Pielop J, Hsu S. Generalized nummular eczema secondary to peginterferon alpha-2b and ribavirin combination therapy for hepatitis C infection. Arch Dermatol. 2005;141(1):102–3.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Fantini F, Padalino C, Gualdi G, Monari P, Giannetti A. Cutaneous lesions as initial signs of interferon alpha-induced sarcoidosis: report of three new cases and review of the literature. Dermatol Ther. 2009;22(Suppl 1):S1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;373(8):754–66.CrossRefGoogle Scholar
  112. 112.
    Sanchez-Politta S, Favet L, Kerl K, Dietrich PY, Piguet V. Bortezomib-induced skin eruption. Dermatology. 2008;216(2):156–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Wu KL, Heule F, Lam K, Sonneveld P. Pleomorphic presentation of cutaneous lesions associated with the proteasome inhibitor bortezomib in patients with multiple myeloma. J Am Acad Dermatol. 2006;55(5):897–900.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Aquavo-Leiva I, Vano-Galvan S, Carrillo-Gijon R, Jaen-Olasolo P. Lupus tumidus induced by bortezomib not requiring discontinuation of the drug. J Eur Acad Dermatol Venereol. 2010;24(11):1363–4.CrossRefGoogle Scholar
  115. 115.
    Dehesa L, Bastida J, Limeres-Gonzalez M, Campos-Adsuar C, Gomez-Duaso J. Cutaneous lymphoid perivascular reaction with atypical CD30+ T cells in a patient with multiple myeloma treated with bortezomib. Clin Exp Dermatol. 2009;34(8):e1031–2.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Murase JE, Wu JJ, Theate I, Cole GW, Barr RJ, Dyson SW. Bortezomib-induced histiocytoid Sweet syndrome. J Am Acad Dermatol. 2009;60(3):596–7.CrossRefGoogle Scholar
  117. 117.
    DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378(25):2386–98.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Rongiolette F, De Lucchi S, Meyes D, Mora M, Rebora A, et al. Follicular mucinosis: a clinicopathologic, histochemical, immunohistochemical and molecular study comparing the primary benign form and the mycosis fungoides-associated follicular mucinosis. J Cutan Pathol. 2010;37(1):15–9.CrossRefGoogle Scholar
  119. 119.
    Williams RF, Hoang MP, Kroshinsky D, Smith GP. Infliximab-induced follicular mucinosis of the face. Int J Dermatol. 2017;56(2):215–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Yanagi T, Sawamura D, Shimizu H. Follicular mucinosis associated with imatinib (STI571). Br J Dermatol. 2004;151(6):1276–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of Dermatology, Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations