Balanced Schnyder Woods for Planar Triangulations: An Experimental Study with Applications to Graph Drawing and Graph Separators

  • Luca Castelli AleardiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


In this work we consider balanced Schnyder woods for planar graphs, which are Schnyder woods where the number of incoming edges of each color at each vertex is balanced as much as possible. We provide a simple linear-time heuristic leading to obtain well balanced Schnyder woods in practice. As test applications we consider two important algorithmic problems: the computation of Schnyder drawings and of small cycle separators. While not being able to provide theoretical guarantees, our experimental results (on a wide collection of planar graphs) suggest that the use of balanced Schnyder woods leads to an improvement of the quality of the layout of Schnyder drawings, and provides an efficient tool for computing short and balanced cycle separators.


  1. 1.
    Bernardi, O., Bonichon, N.: Catalan’s intervals and realizers of triangulations. J. Comb. Theory Ser. A 116(1), 55–75 (2009). pages)CrossRefGoogle Scholar
  2. 2.
    Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. Discret. Math. 298, 104–114 (2005). Scholar
  3. 3.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007). Scholar
  4. 4.
    Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010). Scholar
  5. 5.
    Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010). Scholar
  6. 6.
    Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G.T., Zhang, L.: Egalitarian graph orientations. J. Graph Algorithms Appl. 21(4), 687–708 (2017). Scholar
  7. 7.
    Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, FB Mathematik und Informatik, Freie Universität Berlin (2000)Google Scholar
  8. 8.
    Castelli Aleardi, L.: Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators (2019).
  9. 9.
    Castelli Aleardi, L., Devillers, O.: Array-based compact data structures for triangulations: practical solutions with theoretical guarantees. JoCG 9(1), 247–289 (2018). Scholar
  10. 10.
    Castelli Aleardi, L., Fusy, É., Lewiner, T.: Schnyder woods for higher genus triangulated surfaces, with applications to encoding. Discret. Comput. Geom. 42(3), 489–516 (2009). Scholar
  11. 11.
    Despré, V., Gonçalves, D., Lévêque, B.: Encoding toroidal triangulations. Discret. Comput. Geom. 57(3), 507–544 (2017). Scholar
  12. 12.
    Dhandapani, R.: Greedy drawings of triangulations. Discret. Comput. Geom. 43(2), 375–392 (2010). Scholar
  13. 13.
    Felsner, S.: Lattice structures from planar graphs. Electr. J. Comb. 11(1) (2004) Google Scholar
  14. 14.
    Felsner, S., Zickfeld, F.: On the number of planar orientations with prescribed degrees. Electr. J. Comb. 15(1) (2008)Google Scholar
  15. 15.
    Fowler, J.J., Kobourov, S.G.: Planar preprocessing for spring embedders. In: 20th International Symposium Graph Drawing, pp. 388–399 (2012)Google Scholar
  16. 16.
    Fox-Epstein, E., Mozes, S., Phothilimthana, P.M., Sommer, C.: Short and simple cycle separators in planar graphs. ACM J. Exp. Algorithm 21(1), 2:2:1–2:2:24 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. Discret. Comput. Geom. 51(1), 67–131 (2014). Scholar
  19. 19.
    Gotsman, C.: On the optimality of valence-based connectivity coding. Comput. Graph. Forum 22(1), 99–102 (2003). Scholar
  20. 20.
    Holzer, M., Schulz, F., Wagner, D., Prasinos, G., Zaroliagis, C.D.: Engineering planar separator algorithms. ACM J. Exp. Algorithm 14 (2009).
  21. 21.
    Li, Y., Sun, X., Watson, S.S.: Schnyder woods, sle(16), and liouville quantum gravity. Technical report arXiv:1705.03573v1 [math.PR], ArXiV, May 2016
  22. 22.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980). Scholar
  24. 24.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986). Scholar
  25. 25.
    PIGALE, Public Implementation of a Graph Algorithm Library and Editor.
  26. 26.
    Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46(3–4), 505–527 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 90, pp. 138–148 (1990).
  28. 28.
    Spielman, D.A., Teng, S.: Disk packings and planar separators. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, pp. 349–358 (1996).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LIX, Ecole Polytechnique, Institut Polytechnique de ParisPalaiseauFrance

Personalised recommendations