Advertisement

Balanced Schnyder Woods for Planar Triangulations: An Experimental Study with Applications to Graph Drawing and Graph Separators

  • Luca Castelli AleardiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

Abstract

In this work we consider balanced Schnyder woods for planar graphs, which are Schnyder woods where the number of incoming edges of each color at each vertex is balanced as much as possible. We provide a simple linear-time heuristic leading to obtain well balanced Schnyder woods in practice. As test applications we consider two important algorithmic problems: the computation of Schnyder drawings and of small cycle separators. While not being able to provide theoretical guarantees, our experimental results (on a wide collection of planar graphs) suggest that the use of balanced Schnyder woods leads to an improvement of the quality of the layout of Schnyder drawings, and provides an efficient tool for computing short and balanced cycle separators.

References

  1. 1.
    Bernardi, O., Bonichon, N.: Catalan’s intervals and realizers of triangulations. J. Comb. Theory Ser. A 116(1), 55–75 (2009). https://hal.archives-ouvertes.fr/hal-00143870(22 pages)CrossRefGoogle Scholar
  2. 2.
    Bonichon, N.: A bijection between realizers of maximal plane graphs and pairs of non-crossing Dyck paths. Discret. Math. 298, 104–114 (2005). https://hal.archives-ouvertes.fr/hal-00307593MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007).  https://doi.org/10.1007/s00453-006-0177-6MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16926-7_25CrossRefGoogle Scholar
  5. 5.
    Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14165-2_3CrossRefGoogle Scholar
  6. 6.
    Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G.T., Zhang, L.: Egalitarian graph orientations. J. Graph Algorithms Appl. 21(4), 687–708 (2017).  https://doi.org/10.7155/jgaa.00435MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, FB Mathematik und Informatik, Freie Universität Berlin (2000)Google Scholar
  8. 8.
    Castelli Aleardi, L.: Balanced Schnyder woods for planar triangulations: an experimental study with applications to graph drawing and graph separators (2019). https://arxiv.org/abs/1908.06688
  9. 9.
    Castelli Aleardi, L., Devillers, O.: Array-based compact data structures for triangulations: practical solutions with theoretical guarantees. JoCG 9(1), 247–289 (2018).  https://doi.org/10.20382/jocg.v9i1a8MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Castelli Aleardi, L., Fusy, É., Lewiner, T.: Schnyder woods for higher genus triangulated surfaces, with applications to encoding. Discret. Comput. Geom. 42(3), 489–516 (2009). https://hal.inria.fr/hal-00712046v1MathSciNetCrossRefGoogle Scholar
  11. 11.
    Despré, V., Gonçalves, D., Lévêque, B.: Encoding toroidal triangulations. Discret. Comput. Geom. 57(3), 507–544 (2017).  https://doi.org/10.1007/s00454-016-9832-0MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dhandapani, R.: Greedy drawings of triangulations. Discret. Comput. Geom. 43(2), 375–392 (2010).  https://doi.org/10.1007/s00454-009-9235-6MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Felsner, S.: Lattice structures from planar graphs. Electr. J. Comb. 11(1) (2004) Google Scholar
  14. 14.
    Felsner, S., Zickfeld, F.: On the number of planar orientations with prescribed degrees. Electr. J. Comb. 15(1) (2008)Google Scholar
  15. 15.
    Fowler, J.J., Kobourov, S.G.: Planar preprocessing for spring embedders. In: 20th International Symposium Graph Drawing, pp. 388–399 (2012)Google Scholar
  16. 16.
    Fox-Epstein, E., Mozes, S., Phothilimthana, P.M., Sommer, C.: Short and simple cycle separators in planar graphs. ACM J. Exp. Algorithm 21(1), 2:2:1–2:2:24 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces and straight-line representations. Discret. Comput. Geom. 51(1), 67–131 (2014).  https://doi.org/10.1007/s00454-013-9552-7MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gotsman, C.: On the optimality of valence-based connectivity coding. Comput. Graph. Forum 22(1), 99–102 (2003).  https://doi.org/10.1111/1467-8659.t01-1-00649CrossRefGoogle Scholar
  20. 20.
    Holzer, M., Schulz, F., Wagner, D., Prasinos, G., Zaroliagis, C.D.: Engineering planar separator algorithms. ACM J. Exp. Algorithm 14 (2009).  https://doi.org/10.1145/1498698.1571635
  21. 21.
    Li, Y., Sun, X., Watson, S.S.: Schnyder woods, sle(16), and liouville quantum gravity. Technical report arXiv:1705.03573v1 [math.PR], ArXiV, May 2016
  22. 22.
    Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980).  https://doi.org/10.1137/0209046MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986).  https://doi.org/10.1016/0022-0000(86)90030-9MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    PIGALE, Public Implementation of a Graph Algorithm Library and Editor. http://pigale.sourceforge.net/
  26. 26.
    Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46(3–4), 505–527 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 90, pp. 138–148 (1990). http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf
  28. 28.
    Spielman, D.A., Teng, S.: Disk packings and planar separators. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, pp. 349–358 (1996).  https://doi.org/10.1145/237218.237404

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LIX, Ecole Polytechnique, Institut Polytechnique de ParisPalaiseauFrance

Personalised recommendations