Advertisement

A Natural Quadratic Approach to the Generalized Graph Layering Problem

  • Sven MallachEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

Abstract

We propose a new exact approach to the generalized graph layering problem that is based on a particular quadratic assignment formulation. It expresses, in a natural way, the associated layout restrictions and several possible objectives, such as a minimum total arc length, minimum number of reversed arcs, and minimum width, or the adaptation to a specific drawing area. Our computational experiments show a competitive performance compared to prior exact models.

Keywords

Graph drawing Layering Integer programming 

References

  1. 1.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: an experimental study. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 76–91. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62495-3_39CrossRefzbMATHGoogle Scholar
  2. 2.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing directed graphs. Softw. Eng. 19(3), 214–230 (1993)CrossRefGoogle Scholar
  3. 3.
    Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph layering problem. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 98–109. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36151-0_10CrossRefzbMATHGoogle Scholar
  4. 4.
    Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact layered drawings of general directed graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 209–221. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_17CrossRefGoogle Scholar
  5. 5.
    Mallach, S.: Compact linearization for binary quadratic problems subject to assignment constraints. 4OR 16(3), 295–309 (2018).  https://doi.org/10.1007/s10288-017-0364-0MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of the directed graph layering problem. Technical Report 1501, Kiel University, Department of Computer Science (2015). ISSN 2192–6247Google Scholar
  7. 7.
    Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: A generalization of the directed graph layering problem. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 196–208. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_16CrossRefzbMATHGoogle Scholar
  8. 8.
    Rüegg, U., Ehlers, T., Spönemann, M., von Hanxleden, R.: Generalized layerings for arbitrary and fixed drawing areas. J. Graph Algorithms Appl. 21(5), 823–856 (2017).  https://doi.org/10.7155/jgaa.00441MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975).  https://doi.org/10.1016/S0022-0000(75)80008-0MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of CologneCologneGermany

Personalised recommendations