An SPQR-Tree-Like Embedding Representation for Upward Planarity
Conference paper
First Online:
Abstract
The SPQR-tree is a data structure that compactly represents all planar embeddings of a biconnected planar graph. It plays a key role in constrained planarity testing.
We develop a similar data structure, called the UP-tree, that compactly represents all upward planar embeddings of a biconnected single-source directed graph. We demonstrate the usefulness of the UP-tree by solving the upward planar embedding extension problem for biconnected single-source directed graphs.
References
- 1.Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341
- 2.Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depth embedding of a planar graph in \(o(n^4)\) time. Algorithmica 60(4), 890–937 (2011). https://doi.org/10.1007/s00453-009-9380-6MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)MathSciNetCrossRefGoogle Scholar
- 4.Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)MathSciNetCrossRefGoogle Scholar
- 5.Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, Discrete Mathematics and its Applications, pp. 349–373. CRC Press (2014)Google Scholar
- 6.Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. Comput. Geom. 55, 26–40 (2016). https://doi.org/10.1016/j.comgeo.2016.03.001MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM Trans. Algorithms 12(3), 33:1–33:32 (2016). https://doi.org/10.1145/2838736MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: edge orderings, relative positions, cutvertices. Algorithmica 80(4), 1214–1277 (2018)MathSciNetCrossRefGoogle Scholar
- 9.Brückner, G., Himmel, M., Rutter, I.: An SPQR-tree-like embedding representation for upward planarity. CoRR abs/1908.00352v1 (2019). https://arxiv.org/abs/1908.00352v1
- 10.Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N. (ed.) Proceedings of 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2000–2011. SIAM (2017)Google Scholar
- 11.Brückner, G., Rutter, I., Stumpf, P.: Level planarity: transitivity vs. even crossings. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 39–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_3CrossRefGoogle Scholar
- 12.Da Lozzo, G., Di Battista, G., Frati, F.: Extending upward planar graph drawings. CoRR abs/1902.06575 (2019)Google Scholar
- 13.Da Lozzo, G., Jelínek, V., Kratochvíl, J., Rutter, I.: Planar embeddings with small and uniform faces. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 633–645. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_50CrossRefzbMATHGoogle Scholar
- 14.Da Lozzo, G., Rutter, I.: Approximation algorithms for facial cycles in planar embeddings. In: Hsu, W.L., Lee, D.T., Liao, C.S. (eds.) Proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC 2018). LIPIcs, vol. 123, pp. 41:1–41:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.ISAAC.2018.41
- 15.Di Battista, G., Tamassia, R.: Incremental planarity testing. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pp. 436–441, October 1989. https://doi.org/10.1109/SFCS.1989.63515
- 16.Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032061CrossRefGoogle Scholar
- 17.Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/BF01961541MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_34CrossRefGoogle Scholar
- 19.Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60313-1_145CrossRefGoogle Scholar
- 20.Fulek, R., Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 263–287. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_14CrossRefGoogle Scholar
- 21.Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985)MathSciNetCrossRefGoogle Scholar
- 22.Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_8CrossRefGoogle Scholar
- 23.Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)MathSciNetCrossRefGoogle Scholar
- 24.Hutton, M.D., Lubiw, A.: Upward planar drawing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)MathSciNetCrossRefGoogle Scholar
- 25.Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom.: Theory Appl. 46(4), 466–492 (2013)MathSciNetCrossRefGoogle Scholar
- 26.Jünger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 72–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_7CrossRefGoogle Scholar
- 27.Mac Lane, S.: A structural characterization of planar combinatorial graphs. Duke Math. J. 3(3), 460–472 (1937). https://doi.org/10.1215/S0012-7094-37-00336-3MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Platt, C.R.: Planar lattices and planar graphs. J. Comb. Theory Ser. B 21(1), 30–39 (1976)MathSciNetCrossRefGoogle Scholar
- 29.Randerath, B., Speckenmeyer, E., Boros, E., Hammer, P., Kogan, A., Makino, K., Simeone, B., Cepek, O.: A satisfiability formulation of problems on level graphs. Electron. Notes Discret. Math. 9, 269–277 (2001). lICS 2001 Workshop on Theory and Applications of Satisfiability Testing (SAT 2001)Google Scholar
- 30.Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019