Drawing Planar Graphs with Few Segments on a Polynomial Grid

  • Philipp KindermannEmail author
  • Tamara Mchedlidze
  • Thomas Schneck
  • Antonios Symvonis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


The visual complexity of a graph drawing can be measured by the number of geometric objects used for the representation of its elements. In this paper, we study planar graph drawings where edges are represented by few segments. In such a drawing, one segment may represent multiple edges forming a path. Drawings of planar graphs with few segments were intensively studied in the past years. However, the area requirements were only considered for limited subclasses of planar graphs. In this paper, we show that trees have drawings with \(3n/4-1\) segments and \(n^2\) area, improving the previous result of \(O(n^{3.58})\). We also show that 3-connected planar graphs and biconnected outerplanar graphs have a drawing with \(8n/3-O(1)\) and \(3n/2-O(1)\) segments, respectively, and \(O(n^3)\) area.



We thank Roman Prutkin for the initial discussion of the problem and Therese Biedl for helpful comments.


  1. 1.
    Angelini, P., Colasante, E., Battista, G.D., Frati, F., Patrignani, M.: Monotone drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012). Scholar
  2. 2.
    Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002). Scholar
  3. 3.
    Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). Scholar
  4. 4.
    Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The complexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). Scholar
  5. 5.
    Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications. SIAM J. Comput. 34(4), 924–945 (2005). Scholar
  6. 6.
    Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint paths. Algorithmica 23(4), 302–340 (1999). Scholar
  7. 7.
    Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007). Scholar
  8. 8.
    Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. Comput. Geom. 77, 27–39 (2019). Scholar
  9. 9.
    Durocher, S., Mondal, D., Nishat, R.I., Whitesides, S.: A note on minimum-segment drawings of planar graphs. J. Graph Algorithms Appl. 17(3), 301–328 (2013). Scholar
  10. 10.
    Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discret. Comput. Geom. 40(1), 103–126 (2008). Scholar
  11. 11.
    Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Comput. Sci. 607, 149–165 (2015). Scholar
  12. 12.
    Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives. J. Graph Algorithms Appl. 22(2), 357–387 (2018). Scholar
  13. 13.
    Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected graphs with few segments: algorithms & experiments. J. Graph Algorithms Appl. 21(4), 561–588 (2017). Scholar
  14. 14.
    Kindermann, P., Mchedlidze, T., Schneck, T., Symvonis, A.: Drawing planar graphs with few segments on a polynomial grid. arXiv report (2019).
  15. 15.
    Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. J. Graph Algorithms Appl. 22(3), 501–518 (2018). Scholar
  16. 16.
    Kobourov, S.G., Mchedlidze, T., Vonessen, L.: Gestalt principles in graph drawing. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 558–560. Springer, Cham (2015). Scholar
  17. 17.
    Kryven, M., Ravsky, A., Wolff, A.: Drawing graphs on few circles and few spheres. In: Panda, B.S., Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 164–178. Springer, Cham (2018). Scholar
  18. 18.
    Miura, K., Azuma, M., Nishizeki, T.: Canonical decomposition, realizer, schnyder labeling and orderly spanning trees of plane graphs. Int. J. Found. Comput. Sci. 16(01), 117–141 (2005). Scholar
  19. 19.
    Mondal, D.: Visualizing graphs: optimization and trade-offs. Ph.d. thesis, University of Manitoba (2016).
  20. 20.
    Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.S.: Minimum-segment convex drawings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480 (2013). Scholar
  21. 21.
    Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA 1990, pp. 138–148. SIAM (1990).
  22. 22.
    Schulz, A.: Drawing graphs with few arcs. J. Graph Algorithms Appl. 19(1), 393–412 (2015). Scholar
  23. 23.
    Wade, G.A., Chu, J.: Drawability of complete graphs using a minimal slope set. Comput. J. 37(2), 139–142 (1994). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universität WürzburgWürzburgGermany
  2. 2.Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Universitä TübingenTübingenGermany
  4. 4.National Technical University of AthensAthensGreece

Personalised recommendations