Advertisement

Line and Plane Cover Numbers Revisited

  • Therese Biedl
  • Stefan Felsner
  • Henk Meijer
  • Alexander WolffEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

Abstract

A measure for the visual complexity of a straight-line crossing-free drawing of a graph is the minimum number of lines needed to cover all vertices. For a given graph G, the minimum such number (over all drawings in dimension \(d \in \{2,3\}\)) is called the d-dimensional weak line cover number and denoted by \(\pi ^1_d(G)\). In 3D, the minimum number of planes needed to cover all vertices of G is denoted by \(\pi ^2_3(G)\). When edges are also required to be covered, the corresponding numbers \(\rho ^1_d(G)\) and \(\rho ^2_3(G)\) are called the (strong) line cover number and the (strong) plane cover number.

Computing any of these cover numbers—except \(\pi ^1_2(G)\)—is known to be NP-hard. The complexity of computing \(\pi ^1_2(G)\) was posed as an open problem by Chaplick et al. [WADS 2017]. We show that it is NP-hard to decide, for a given planar graph G, whether \(\pi ^1_2(G)=2\). We further show that the universal stacked triangulation of depth d, \(G_d\), has \(\pi ^1_2(G_d)=d+1\). Concerning 3D, we show that any n-vertex graph G with \(\rho ^2_3(G)=2\) has at most \(5n-19\) edges, which is tight.

Notes

Acknowledgments

This research started at the Bertinoro Workshop on Graph Drawing 2017. We thank the organizers and other participants, in particular Will Evans, Sylvain Lazard, Pavel Valtr, Sue Whitesides, and Steve Wismath. We also thank Alex Pilz and Piotr Micek for enlightening conversations.

References

  1. 1.
    Bannister, M.J., Devanny, W.E., Dujmović, V., Eppstein, D., Wood, D.R.: Track layouts, layered path decompositions, and leveled planarity. Algorithmica 81(4), 1561–1583 (2019).  https://doi.org/10.1007/s00453-018-0487-5MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Biedl, T., Felsner, S., Meijer, H., Wolff, A.: Line and plane cover numbers revisited. Arxiv report (2019). http://arxiv.org/abs/1908.07647
  3. 3.
    Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-50106-2_14. https://arxiv.org/abs/1607.01196CrossRefzbMATHGoogle Scholar
  4. 4.
    Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The complexity of drawing graphs on few lines and few planes. Algorithms and Data Structures. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62127-2_23. https://arxiv.org/abs/1607.06444CrossRefzbMATHGoogle Scholar
  5. 5.
    Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007).  https://doi.org/10.1016/j.comgeo.2006.09.002MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dujmovic, V., Joret, G., Micek, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar graphs have bounded queue-number. Arxiv report (2019). http://arxiv.org/abs/1904.04791
  7. 7.
    Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 497–522 (2004). https://hal.inria.fr/hal-00959023MathSciNetzbMATHGoogle Scholar
  8. 8.
    Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. In: Proceedings of 26th Canadian Confernce on Computational Geometry (CCCG 2014), pp. 40–45 (2014). http://cccg.ca/proceedings/2014/papers/paper06.pdf
  9. 9.
    Eppstein, D.: Forbidden Configurations in Discrete Geometry. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  10. 10.
    Eppstein, D.: Cubic planar graphs that cannot be drawn on few lines. In: Proceedings of 35th International Symposium on Computational Geometry (SoCG 2019). LIPIcs, vol. 129, pp. 32:1–32:15 (2019).  https://doi.org/10.4230/LIPIcs.SoCG.2019.32. https://arxiv.org/abs/1903.05256
  11. 11.
    Felsner, S.: 4-connected triangulations on few lines. In: Archambault, D., Tóth, C.D. (eds.) Proceedings of 27th International Symposium on Graph Drawing & Network Visualization (GD 2019). LNCS, vol. 11904, pp. 395–408. Springer (2019). https://arxiv.org/abs/1908.04524
  12. 12.
    Firman, O., Lipp, F., Straube, L., Wolff, A.: Examining weak line covers with two lines in the plane. In: Biedl, T., Kerren, A. (eds.) Proceedings of International Symposium on Graph Drawing Network Visualization (GD 2018). LNCS, vol. 11282, pp. 643–645 (2018). https://link.springer.com/content/pdf/bbm:978-3-030-04414-5/1.pdf (poster)
  13. 13.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992).  https://doi.org/10.1137/0221055MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives. J. Graph Alg. Appl. 22(2), 357–387 (2018).  https://doi.org/10.7155/jgaa.00473MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. J. Graph Alg. Appl. 22(3), 501–518 (2018).  https://doi.org/10.7155/jgaa.00474MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412 (2015).  https://doi.org/10.7155/jgaa.00366MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of WaterlooWaterlooCanada
  2. 2.TU BerlinBerlinGermany
  3. 3.University College RooseveltMiddelburgThe Netherlands
  4. 4.Universität WürzburgWürzburgGermany

Personalised recommendations