4-Connected Triangulations on Few Lines
Conference paper
First Online:
Abstract
We show that 4-connected plane triangulations can be redrawn such that edges are represented by straight segments and the vertices are covered by a set of at most \(\sqrt{2n}\) lines each of them horizontal or vertical. The same holds for all subgraphs of such triangulations.
The proof is based on a corresponding result for diagrams of planar lattices which makes use of orthogonal chain and antichain families.
Notes
Acknowledgments
Work on this problem began at the 2018 Bertinoro Workshop of Graph Drawing. I thank the organizers of the event for making this possible. Special thanks go to Pavel Valtr, Alex Pilz and Torsten Ueckerdt for helpful discussions.
References
- 1.Bannister, M.J., Devanny, W.E., Dujmovic, V., Eppstein, D., Wood, D.R.: Track layouts, layered path decompositions, and leveled planarity. Algorithmica 81, 1561–1583 (2019)MathSciNetCrossRefGoogle Scholar
- 2.Biedl, T., Felsner, S., Meijer, H., Wolff, A.: Line and plane cover numbers revisited. In: Archambault, D., Tóth, C.D. (eds.) GD 2019, LNCS 11904, pp. 409–415. Springer, Heidelberg (2019) Google Scholar
- 3.Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawing graphs on few lines and few planes. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_14CrossRefzbMATHGoogle Scholar
- 4.Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: The complexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_23CrossRefzbMATHGoogle Scholar
- 5.Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete Comput. Geom. 7, 381–401 (1992)MathSciNetCrossRefGoogle Scholar
- 6.Eppstein, D.: Forbidden Configurations in Discrete Geometry. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
- 7.Eppstein, D.: Cubic planar graphs that cannot be drawn on few lines. In: Proceedings of SoCG 2019. LIPIcs (2019)Google Scholar
- 8.Fomin, S.V.: Finite partially ordered sets and Young tableaux. Soviet Math. Dokl. 19, 1510–1514 (1978)zbMATHGoogle Scholar
- 9.Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)zbMATHGoogle Scholar
- 10.Frank, A.: On chain and antichain families of partially ordered sets. J. Combin. Theory Ser. B 29, 176–184 (1980)MathSciNetCrossRefGoogle Scholar
- 11.de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Bipolar orientations revisited. Discrete Appl. Math. 56(2–3), 157–179 (1995)MathSciNetCrossRefGoogle Scholar
- 12.Fusy, E.: Combinatoire des cartes planaires et applications algorithmiques. Ph.D. thesis, LIX Polytechnique (2007). www.lix.polytechnique.fr/~fusy/Articles/these_eric_fusy.pdf
- 13.Fusy, E.: Transversal structures on triangulations: a combinatorial study and straight-line drawings. Discr. Math. 309(7), 1870–1894 (2009)MathSciNetCrossRefGoogle Scholar
- 14.Greene, C.: An extension of Schensted’s theorem. Adv. Math. 14, 254–265 (1974)MathSciNetCrossRefGoogle Scholar
- 15.Greene, C.: Some partitions associated with a partially ordered set. J. Combin. Theory Ser. A 20, 69–79 (1976)MathSciNetCrossRefGoogle Scholar
- 16.Greene, C., Kleitman, D.J.: The structure of Sperner k-families. J. Combin. Theory Ser. A 20, 41–68 (1976)MathSciNetCrossRefGoogle Scholar
- 17.Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theor. Comput. Sci. 172, 175–193 (1997)MathSciNetCrossRefGoogle Scholar
- 18.Saks, M.: A short proof of the existence of \(k\)-saturated partitions of partially ordered sets. Adv. Math. 33, 207–211 (1979)MathSciNetCrossRefGoogle Scholar
- 19.Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of SODA 1990, pp. 138–148. ACM-SIAM (1990)Google Scholar
- 20.Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (1992)zbMATHGoogle Scholar
- 21.Trotter, W.T.: Partially ordered sets. In: Graham, R.L., Grötschel, M., Lovás, L. (eds.) Handbook of Combinatorics, North-Holland, vol. I, pp. 433–480 (1995)Google Scholar
- 22.West, D.B.: Parameters of partial orders and graphs: packing, covering and representation. In: Rival, I. (ed.) Graphs and Orders, pp. 267–350. D. Reidel, Dordrecht (1985)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019