Advertisement

Stress-Plus-X (SPX) Graph Layout

  • Sabin DevkotaEmail author
  • Reyan Ahmed
  • Felice De Luca
  • Katherine E. Isaacs
  • Stephen Kobourov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

Abstract

Stress, edge crossings, and crossing angles play an important role in the quality and readability of graph drawings. Most standard graph drawing algorithms optimize one of these criteria which may lead to layouts that are deficient in other criteria. We introduce an optimization framework, Stress-Plus-X (SPX), that simultaneously optimizes stress together with several other criteria: edge crossings, minimum crossing angle, and upwardness (for directed acyclic graphs). SPX achieves results that are close to the state-of-the-art algorithms that optimize these metrics individually. SPX is flexible and extensible and can optimize a subset or all of these criteria simultaneously. Our experimental analysis shows that our joint optimization approach is successful in drawing graphs with good performance across readability criteria.

References

  1. 1.
    Ábrego, B.M., Fernández-Merchant, S., Salazar, G.: The rectilinear crossing number of \(k_n\): closing in (or are we?). Thirty Essays Geom. Gr. Theory (2012).  https://doi.org/10.1007/978-1-4614-0110-0_2CrossRefzbMATHGoogle Scholar
  2. 2.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 62–67. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18469-7_6CrossRefzbMATHGoogle Scholar
  3. 3.
    Bekos, M.A., Förster, H., Geckeler, C., Holländer, L., Kaufmann, M., Spallek, A.M., Splett, J.: A heuristic approach towards drawings of graphs with high crossing resolution. CoRR abs/1808.10519 (2018). http://arxiv.org/abs/1808.10519
  4. 4.
    Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Handbook of Graph Drawing and Visualization, pp. 43–85 (2013)Google Scholar
  5. 5.
    Chen, L., Buja, A.: Local multidimensional scaling for nonlinear dimension reduction, graph drawing, and proximity analysis. J. Am. Stat. Assoc. 104(485), 209–219 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
  7. 7.
    De Luca, F.: graphmetrics library (2019). https://github.com/felicedeluca/graphmetrics
  8. 8.
    Demel, A., Dürrschnabel, D., Mchedlidze, T., Radermacher, M., Wulf, L.: A greedy heuristic for crossing-angle maximization. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 286–299. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04414-5_20CrossRefGoogle Scholar
  9. 9.
    Devanny, W., Kindermann, P., Löffler, M., Rutter, I.: Graph drawing contest report. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 575–582. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73915-1_44CrossRefzbMATHGoogle Scholar
  10. 10.
    Devanny, W., Kindermann, P., Löffler, M., Rutter, I.: Graph drawing contest report. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 609–617. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-04414-5_43CrossRefzbMATHGoogle Scholar
  11. 11.
    Devkota, S., Ahmed, R., De Luca, F., Isaacs, K., Kobourov, S.: Stress-Plus-X (SPX) graph layout (2019)Google Scholar
  12. 12.
    Duncan, C.A., Gutwenger, C., Nachmanson, L., Sander, G.: Graph drawing contest report. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 575–579. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36763-2_58CrossRefGoogle Scholar
  13. 13.
    Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput. Graph. Forum 28, 991–998 (2009)CrossRefGoogle Scholar
  14. 14.
    Dwyer, T., Koren, Y., Marriott, K.: Ipsep-cola: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Vis. Comput. Gr. 12, 821–828 (2006).  https://doi.org/10.1109/TVCG.2006.156CrossRefGoogle Scholar
  15. 15.
    Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45848-4_57CrossRefzbMATHGoogle Scholar
  16. 16.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991).  https://doi.org/10.1002/spe.4380211102CrossRefGoogle Scholar
  17. 17.
    Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31843-9_25CrossRefzbMATHGoogle Scholar
  18. 18.
    Gansner, E.R., North, S.C., Vo, K.P.: Technique for drawing directed graphs (1990). uS Patent 4,953,106Google Scholar
  19. 19.
    Gutwenger, C., Löffler, M., Nachmanson, L., Rutter, I.: Graph drawing contest report. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 501–506. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45803-7_42CrossRefzbMATHGoogle Scholar
  20. 20.
    Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014).  https://doi.org/10.1016/j.jvlc.2014.03.001CrossRefGoogle Scholar
  21. 21.
    Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multiple aesthetics produces better graph drawings. J. Vis. Lang. Comput. 24(4), 262–272 (2013).  https://doi.org/10.1016/j.jvlc.2011.12.002. http://www.sciencedirect.com/science/article/pii/S1045926X11000814CrossRefGoogle Scholar
  22. 22.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989).  https://doi.org/10.1016/0020-0190(89)90102-6. http://www.sciencedirect.com/science/article/pii/0020019089901026MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.: Graph layouts by t-sne. Comput. Graph. Forum 36(3), 283–294 (2017).  https://doi.org/10.1111/cgf.13187CrossRefGoogle Scholar
  24. 24.
    Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)zbMATHGoogle Scholar
  26. 26.
    McInnes, L., Healy, J., Melville, J.: Umap: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)
  27. 27.
    Mutzel, P., Chimani, M., Gutwenger, C., Klein, K.: OGDF an open graph drawing framework. In: 15th International Symposium on Graph Drawing (2007).  https://doi.org/10.17877/DE290R-7670
  28. 28.
    Pich, C.: Applications of multidimensional scaling to graph drawing. Ph.D. thesis (2009)Google Scholar
  29. 29.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63938-1_67CrossRefGoogle Scholar
  30. 30.
    Radermacher, M., Reichard, K., Rutter, I., Wagner, D.: A geometric heuristic for rectilinear crossing minimization. In: Pagh, R., Venkatasubramanian, S. (eds.) The 20th Workshop on Algorithm Engineering and Experiments (ALENEX 2018), pp. 129–138 (2018).  https://doi.org/10.1137/1.9781611975055.12
  31. 31.
    Ruder, S.: An overview of gradient descent optimization algorithms. CoRR abs/1609.04747 (2016). http://arxiv.org/abs/1609.04747
  32. 32.
    Seemann, J.: Extending the sugiyama algorithm for drawing uml class diagrams: towards automatic layout of object-oriented software diagrams. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63938-1_86CrossRefGoogle Scholar
  33. 33.
    Shabbeer, A., Ozcaglar, C., Gonzalez, M., Bennett, K.P.: Optimal embedding of heterogeneous graph data with edge crossing constraints. In: NIPS Workshop on Challenges of Data Visualization (2010)Google Scholar
  34. 34.
    Shepard, R.N.: The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27(2), 125–140 (1962)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wang, Y., Wang, Y., Sun, Y., Zhu, L., Lu, K., Fu, C., Sedlmair, M., Deussen, O., Chen, B.: Revisiting stress majorization as a unified framework for interactive constrained graph visualization. IEEE Trans. Vis. Comput. Gr. 24(1), 489–499 (2018).  https://doi.org/10.1109/TVCG.2017.2745919CrossRefGoogle Scholar
  37. 37.
    Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations