Advertisement

ChordLink: A New Hybrid Visualization Model

  • Lorenzo Angori
  • Walter Didimo
  • Fabrizio Montecchiani
  • Daniele Pagliuca
  • Alessandra TappiniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

Abstract

Many real-world networks are globally sparse but locally dense. Typical examples are social networks, biological networks, and information networks. This double structural nature makes it difficult to adopt a homogeneous visualization model that clearly conveys an overview of the network and the internal structure of its communities at the same time. As a consequence, the use of hybrid visualizations has been proposed. For instance, NodeTrix combines node-link and matrix-based representations (Henry et al., 2007). In this paper we describe ChordLink, a hybrid visualization model that embeds chord diagrams, used to represent dense subgraphs, into a node-link diagram, which shows the global network structure. The visualization is intuitive and makes it possible to interactively highlight the structure of a community while keeping the rest of the layout stable. We discuss the intriguing algorithmic challenges behind the ChordLink model, present a prototype system, and illustrate case studies on real-world networks.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017).  https://doi.org/10.7155/jgaa.00437MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: ChordLink: a new hybrid visualization model. CoRR abs/1908.08412 (2019). http://arxiv.org/abs/1908.08412
  3. 3.
    Argyriou, E.N., Symvonis, A., Vassiliou, V.: A fraud detection visualization system utilizing radial drawings and heat-maps. In: Laramee, R.S., Kerren, A., Braz, J. (eds.) IVAPP 2014, pp. 153–160. SciTePress (2014).  https://doi.org/10.5220/0004735501530160
  4. 4.
    Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: Profiling distributed graph processing systems through visual analytics. Future Gener. Comput. Syst. 87, 43–57 (2018).  https://doi.org/10.1016/j.future.2018.04.067CrossRefzbMATHGoogle Scholar
  5. 5.
    Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011).  https://doi.org/10.1109/TVCG.2010.265CrossRefGoogle Scholar
  6. 6.
    Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 6(3), 115–135 (2016).  https://doi.org/10.1002/widm.1178CrossRefGoogle Scholar
  7. 7.
    Bostock, M., Ogievetsky, V., Heer, J.: D\({^3}\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011).  https://doi.org/10.1109/TVCG.2011.185CrossRefGoogle Scholar
  8. 8.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018).  https://doi.org/10.7155/jgaa.00461MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (kp)-planarity: a relaxation of hybrid planarity. In: Das, G.K., Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 148–159. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-10564-8_12CrossRefGoogle Scholar
  10. 10.
    Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix planarity testing with small clusters. Algorithmica (2019).  https://doi.org/10.1007/s00453-019-00585-6
  11. 11.
    Didimo, W., Giamminonni, L., Liotta, G., Montecchiani, F., Pagliuca, D.: A visual analytics system to support tax evasion discovery. Decis. Support Syst. 110, 71–83 (2018).  https://doi.org/10.1016/j.dss.2018.03.008CrossRefGoogle Scholar
  12. 12.
    Didimo, W., Liotta, G., Montecchiani, F.: Network visualization for financial crime detection. J. Vis. Lang. Comput. 25(4), 433–451 (2014).  https://doi.org/10.1016/j.jvlc.2014.01.002CrossRefGoogle Scholar
  13. 13.
    Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks: algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014).  https://doi.org/10.1016/j.ins.2013.09.048MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dogrusöz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A layout algorithm for undirected compound graphs. Inf. Sci. 179(7), 980–994 (2009).  https://doi.org/10.1016/j.ins.2008.11.017CrossRefGoogle Scholar
  15. 15.
    Fekete, J.D., Wang, D., Dang, N., Aris, A., Plaisant, C. (eds.): Overlaying graph links on treemaps. In: IEEE Symposium on Information Visualization Conference Compendium (demonstration) (2003)Google Scholar
  16. 16.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web communities. IEEE Comput. 35(3), 66–71 (2002).  https://doi.org/10.1109/2.989932CrossRefGoogle Scholar
  17. 17.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).  https://doi.org/10.1016/j.physrep.2009.11.002MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gabrielli, L., Rinzivillo, S., Ronzano, F., Villatoro, D.: From tweets to semantic trajectories: mining anomalous urban mobility patterns. In: Nin, J., Villatoro, D. (eds.) CitiSens 2013. LNCS (LNAI), vol. 8313, pp. 26–35. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04178-0_3CrossRefGoogle Scholar
  19. 19.
    Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf. Visual. 4(2), 114–135 (2005)CrossRefGoogle Scholar
  20. 20.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002).  https://doi.org/10.1073/pnas.122653799MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530 (1988).  https://doi.org/10.1145/42411.42414MathSciNetCrossRefGoogle Scholar
  22. 22.
    Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007).  https://doi.org/10.1109/TVCG.2007.70582CrossRefGoogle Scholar
  23. 23.
    Himsolt, M.: GML: a portable graph file format (technical report Universität Passau) (2010)Google Scholar
  24. 24.
    Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19(4), 532–538 (2003).  https://doi.org/10.1093/bioinformatics/btg033CrossRefGoogle Scholar
  25. 25.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006).  https://doi.org/10.1109/TVCG.2006.147CrossRefGoogle Scholar
  26. 26.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014).  https://doi.org/10.1016/j.jvlc.2014.03.001CrossRefGoogle Scholar
  27. 27.
    Huang, W., Hong, S., Eades, P.: Effects of sociogram drawing conventions and edge crossings in social network visualization. J. Graph Algorithms Appl. 11(2), 397–429 (2007).  https://doi.org/10.7155/jgaa.00152MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models (The Bookgrow out of a Dagstuhl Seminar, April 1999). LNCS, vol. 2025. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44969-8CrossRefGoogle Scholar
  29. 29.
    Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics. Genome Res. 19(9), 1639–1645 (2009).  https://doi.org/10.1101/gr.092759.109
  30. 30.
    Ley, M.: The DBLP computer science bibliography. https://dblp.uni-trier.de
  31. 31.
    Mahmoud, H., Masulli, F., Rovetta, S., Russo, G.: Community detection in protein-protein interaction networks using spectral and graph approaches. In: Formenti, E., Tagliaferri, R., Wit, E. (eds.) CIBB 2013 2013. LNCS, vol. 8452, pp. 62–75. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09042-9_5CrossRefGoogle Scholar
  32. 32.
    Muelder, C., Ma, K.: A treemap based method for rapid layout of large graphs. In: PacificVis, pp. 231–238. IEEE Computer Society (2008).  https://doi.org/10.1109/PACIFICVIS.2008.4475481
  33. 33.
    Onnela, J., Kaski, K., Kertész, J.: Clustering and information in correlationbased financial networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 38(2), 353–362 (2004).  https://doi.org/10.1140/epjb/e2004-00128-7CrossRefGoogle Scholar
  34. 34.
    Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56(1082–1097), 1164–1166 (2009)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000).  https://doi.org/10.1016/S0953-5438(00)00032-1CrossRefGoogle Scholar
  36. 36.
    Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)CrossRefGoogle Scholar
  37. 37.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA, 3–6 September 1996, pp. 336–343 (1996).  https://doi.org/10.1109/VL.1996.545307
  38. 38.
    Sindre, G., Gulla, B., Jokstad, H.G.: Onion graphs: asthetics and layout. In: VL, pp. 287–291. IEEE Computer Society (1993).  https://doi.org/10.1109/VL.1993.269613
  39. 39.
    Six, J.M., Tollis, I.Y.G.: A framework for user-grouped circular drawings. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24595-7_13CrossRefGoogle Scholar
  40. 40.
    Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engineers, Series on Software Engineering and Knowledge Engineering, vol. 11. World Scientific (2002).  https://doi.org/10.1142/4902
  41. 41.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Visual. 1(2), 103–110 (2002).  https://doi.org/10.1057/palgrave.ivs.9500013CrossRefGoogle Scholar
  42. 42.
    Wu, H., He, J., Pei, Y., Long, X.: Finding research community in collaboration network with expertise profiling. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 337–344. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14922-1_42CrossRefGoogle Scholar
  43. 43.
    Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: Combining treemaps and node-link diagrams. In: INFOVIS, pp. 57–64. IEEE Computer Society (2005).  https://doi.org/10.1109/INFVIS.2005.1532129

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Agenzia delle EntrateArezzoItaly

Personalised recommendations