ChordLink: A New Hybrid Visualization Model

  • Lorenzo Angori
  • Walter Didimo
  • Fabrizio Montecchiani
  • Daniele Pagliuca
  • Alessandra TappiniEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


Many real-world networks are globally sparse but locally dense. Typical examples are social networks, biological networks, and information networks. This double structural nature makes it difficult to adopt a homogeneous visualization model that clearly conveys an overview of the network and the internal structure of its communities at the same time. As a consequence, the use of hybrid visualizations has been proposed. For instance, NodeTrix combines node-link and matrix-based representations (Henry et al., 2007). In this paper we describe ChordLink, a hybrid visualization model that embeds chord diagrams, used to represent dense subgraphs, into a node-link diagram, which shows the global network structure. The visualization is intuitive and makes it possible to interactively highlight the structure of a community while keeping the rest of the layout stable. We discuss the intriguing algorithmic challenges behind the ChordLink model, present a prototype system, and illustrate case studies on real-world networks.


  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731–755 (2017). Scholar
  2. 2.
    Angori, L., Didimo, W., Montecchiani, F., Pagliuca, D., Tappini, A.: ChordLink: a new hybrid visualization model. CoRR abs/1908.08412 (2019).
  3. 3.
    Argyriou, E.N., Symvonis, A., Vassiliou, V.: A fraud detection visualization system utilizing radial drawings and heat-maps. In: Laramee, R.S., Kerren, A., Braz, J. (eds.) IVAPP 2014, pp. 153–160. SciTePress (2014).
  4. 4.
    Arleo, A., Didimo, W., Liotta, G., Montecchiani, F.: Profiling distributed graph processing systems through visual analytics. Future Gener. Comput. Syst. 87, 43–57 (2018). Scholar
  5. 5.
    Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani, M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualizations. IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011). Scholar
  6. 6.
    Bedi, P., Sharma, C.: Community detection in social networks. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 6(3), 115–135 (2016). Scholar
  7. 7.
    Bostock, M., Ogievetsky, V., Heer, J.: D\({^3}\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011). Scholar
  8. 8.
    Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139–176 (2018). Scholar
  9. 9.
    Di Giacomo, E., Lenhart, W.J., Liotta, G., Randolph, T.W., Tappini, A.: (kp)-planarity: a relaxation of hybrid planarity. In: Das, G.K., Mandal, P.S., Mukhopadhyaya, K., Nakano, S. (eds.) WALCOM 2019. LNCS, vol. 11355, pp. 148–159. Springer, Cham (2019). Scholar
  10. 10.
    Di Giacomo, E., Liotta, G., Patrignani, M., Rutter, I., Tappini, A.: NodeTrix planarity testing with small clusters. Algorithmica (2019).
  11. 11.
    Didimo, W., Giamminonni, L., Liotta, G., Montecchiani, F., Pagliuca, D.: A visual analytics system to support tax evasion discovery. Decis. Support Syst. 110, 71–83 (2018). Scholar
  12. 12.
    Didimo, W., Liotta, G., Montecchiani, F.: Network visualization for financial crime detection. J. Vis. Lang. Comput. 25(4), 433–451 (2014). Scholar
  13. 13.
    Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks: algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014). Scholar
  14. 14.
    Dogrusöz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A layout algorithm for undirected compound graphs. Inf. Sci. 179(7), 980–994 (2009). Scholar
  15. 15.
    Fekete, J.D., Wang, D., Dang, N., Aris, A., Plaisant, C. (eds.): Overlaying graph links on treemaps. In: IEEE Symposium on Information Visualization Conference Compendium (demonstration) (2003)Google Scholar
  16. 16.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web communities. IEEE Comput. 35(3), 66–71 (2002). Scholar
  17. 17.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). Scholar
  18. 18.
    Gabrielli, L., Rinzivillo, S., Ronzano, F., Villatoro, D.: From tweets to semantic trajectories: mining anomalous urban mobility patterns. In: Nin, J., Villatoro, D. (eds.) CitiSens 2013. LNCS (LNAI), vol. 8313, pp. 26–35. Springer, Cham (2014). Scholar
  19. 19.
    Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf. Visual. 4(2), 114–135 (2005)CrossRefGoogle Scholar
  20. 20.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002). Scholar
  21. 21.
    Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530 (1988). Scholar
  22. 22.
    Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007). Scholar
  23. 23.
    Himsolt, M.: GML: a portable graph file format (technical report Universität Passau) (2010)Google Scholar
  24. 24.
    Holme, P., Huss, M., Jeong, H.: Subnetwork hierarchies of biochemical pathways. Bioinformatics 19(4), 532–538 (2003). Scholar
  25. 25.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). Scholar
  26. 26.
    Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput. 25(4), 452–465 (2014). Scholar
  27. 27.
    Huang, W., Hong, S., Eades, P.: Effects of sociogram drawing conventions and edge crossings in social network visualization. J. Graph Algorithms Appl. 11(2), 397–429 (2007). Scholar
  28. 28.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models (The Bookgrow out of a Dagstuhl Seminar, April 1999). LNCS, vol. 2025. Springer, Heidelberg (2001). Scholar
  29. 29.
    Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., Marra, M.A.: Circos: an information aesthetic for comparative genomics. Genome Res. 19(9), 1639–1645 (2009).
  30. 30.
    Ley, M.: The DBLP computer science bibliography.
  31. 31.
    Mahmoud, H., Masulli, F., Rovetta, S., Russo, G.: Community detection in protein-protein interaction networks using spectral and graph approaches. In: Formenti, E., Tagliaferri, R., Wit, E. (eds.) CIBB 2013 2013. LNCS, vol. 8452, pp. 62–75. Springer, Cham (2014). Scholar
  32. 32.
    Muelder, C., Ma, K.: A treemap based method for rapid layout of large graphs. In: PacificVis, pp. 231–238. IEEE Computer Society (2008).
  33. 33.
    Onnela, J., Kaski, K., Kertész, J.: Clustering and information in correlationbased financial networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 38(2), 353–362 (2004). Scholar
  34. 34.
    Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. Am. Math. Soc. 56(1082–1097), 1164–1166 (2009)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000). Scholar
  36. 36.
    Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)CrossRefGoogle Scholar
  37. 37.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA, 3–6 September 1996, pp. 336–343 (1996).
  38. 38.
    Sindre, G., Gulla, B., Jokstad, H.G.: Onion graphs: asthetics and layout. In: VL, pp. 287–291. IEEE Computer Society (1993).
  39. 39.
    Six, J.M., Tollis, I.Y.G.: A framework for user-grouped circular drawings. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 135–146. Springer, Heidelberg (2004). Scholar
  40. 40.
    Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engineers, Series on Software Engineering and Knowledge Engineering, vol. 11. World Scientific (2002).
  41. 41.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Visual. 1(2), 103–110 (2002). Scholar
  42. 42.
    Wu, H., He, J., Pei, Y., Long, X.: Finding research community in collaboration network with expertise profiling. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 337–344. Springer, Heidelberg (2010). Scholar
  43. 43.
    Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: Combining treemaps and node-link diagrams. In: INFOVIS, pp. 57–64. IEEE Computer Society (2005).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PerugiaPerugiaItaly
  2. 2.Agenzia delle EntrateArezzoItaly

Personalised recommendations