Computing Height-Optimal Tangles Faster

  • Oksana FirmanEmail author
  • Philipp Kindermann
  • Alexander Ravsky
  • Alexander Wolff
  • Johannes Zink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


We study the following combinatorial problem. Given a set of n y-monotone wires, a tangle determines the order of the wires on a number of horizontal layers such that the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset L of swaps (that is, unordered pairs of numbers between 1 and n) and an initial order of the wires, a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L. The aim is to find a tangle that realizes L using the smallest number of layers. We show that this problem is NP-hard, and we give an algorithm that computes an optimal tangle for n wires and a given list L of swaps in \(O((2|L|/n^2+1)^{n^2/2} \cdot \varphi ^n \cdot n)\) time, where \(\varphi \approx 1.618\) is the golden ratio. We can treat lists where every swap occurs at most once in \(O(n!\varphi ^n)\) time. We implemented the algorithm for the general case and compared it to an existing algorithm. Finally, we discuss feasibility for lists with a simple structure.



We thank Thomas C. van Dijk for stimulating discussions and the anonymous reviewers for helpful comments.


  1. 1.
    Bereg, S., Holroyd, A., Nachmanson, L., Pupyrev, S.: Representing permutations with few moves. SIAM J. Disc. Math. 30(4), 1950–1977 (2016).
  2. 2.
    Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations with few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 484–495. Springer, Cham (2013).
  3. 3.
    Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I: Lorenz’s equation. Topology 22(1), 47–82 (1983). Scholar
  4. 4.
    Firman, O., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: Computing height-optimal tangles faster. Arxiv report (2019).
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Mindlin, G., Hou, X.J., Gilmore, R., Solari, H., Tufillaro, N.B.: Classification of strange attractors by integers. Phys. Rev. Lett. 64, 2350–2353 (1990). Scholar
  7. 7.
    Olszewski, M., Meder, J., Kieffer, E., Bleuse, R., Rosalie, M., Danoy, G., Bouvry, P.: Visualizing the template of a chaotic attractor. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 106–119. Springer, Cham (2018).
  8. 8.
    Wang, D.C.: Novel routing schemes for IC layout part I: two-layer channel routing. In: Proceedings of 28th ACM/IEEE Design Automation Conference (DAC 1991), pp. 49–53 (1991).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für InformatikUniversität WürzburgWürzburgGermany
  2. 2.National Academy of Sciences of UkraineLvivUkraine

Personalised recommendations