# Computing Height-Optimal Tangles Faster

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)

## Abstract

We study the following combinatorial problem. Given a set of n y-monotone wires, a tangle determines the order of the wires on a number of horizontal layers such that the orders of the wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset L of swaps (that is, unordered pairs of numbers between 1 and n) and an initial order of the wires, a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L. The aim is to find a tangle that realizes L using the smallest number of layers. We show that this problem is NP-hard, and we give an algorithm that computes an optimal tangle for n wires and a given list L of swaps in $$O((2|L|/n^2+1)^{n^2/2} \cdot \varphi ^n \cdot n)$$ time, where $$\varphi \approx 1.618$$ is the golden ratio. We can treat lists where every swap occurs at most once in $$O(n!\varphi ^n)$$ time. We implemented the algorithm for the general case and compared it to an existing algorithm. Finally, we discuss feasibility for lists with a simple structure.

## References

1. 1.
Bereg, S., Holroyd, A., Nachmanson, L., Pupyrev, S.: Representing permutations with few moves. SIAM J. Disc. Math. 30(4), 1950–1977 (2016). . http://arxiv.org/abs/1508.03674
2. 2.
Bereg, S., Holroyd, A.E., Nachmanson, L., Pupyrev, S.: Drawing permutations with few corners. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 484–495. Springer, Cham (2013). . http://arxiv.org/abs/1306.4048
3. 3.
Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems–I: Lorenz’s equation. Topology 22(1), 47–82 (1983).
4. 4.
Firman, O., Kindermann, P., Ravsky, A., Wolff, A., Zink, J.: Computing height-optimal tangles faster. Arxiv report (2019). http://arxiv.org/abs/1901.06548
5. 5.
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)
6. 6.
Mindlin, G., Hou, X.J., Gilmore, R., Solari, H., Tufillaro, N.B.: Classification of strange attractors by integers. Phys. Rev. Lett. 64, 2350–2353 (1990).
7. 7.
Olszewski, M., Meder, J., Kieffer, E., Bleuse, R., Rosalie, M., Danoy, G., Bouvry, P.: Visualizing the template of a chaotic attractor. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 106–119. Springer, Cham (2018). . http://arxiv.org/abs/1807.11853
8. 8.
Wang, D.C.: Novel routing schemes for IC layout part I: two-layer channel routing. In: Proceedings of 28th ACM/IEEE Design Automation Conference (DAC 1991), pp. 49–53 (1991).