On Strict (Outer-)Confluent Graphs

  • Henry Förster
  • Robert Ganian
  • Fabian KluteEmail author
  • Martin Nöllenburg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


A strict confluent (SC) graph drawing is a drawing of a graph with vertices as points in the plane, where vertex adjacencies are represented not by individual curves but rather by unique smooth paths through a planar system of junctions and arcs. If all vertices of the graph lie in the outer face of the drawing, the drawing is called a strict outerconfluent (SOC) drawing. SC and SOC graphs were first considered by Eppstein et al. in Graph Drawing 2013. Here, we establish several new relationships between the class of SC graphs and other graph classes, in particular string graphs and unit-interval graphs. Further, we extend earlier results about special bipartite graph classes to the notion of strict outerconfluency, show that SOC graphs have cop number two, and establish that tree-like (\(\varDelta \)-)SOC graphs have bounded cliquewidth.


  1. 1.
    Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Appl. Math. 8(1), 1–12 (1984). Scholar
  2. 2.
    Bach, B., Riche, N.H., Hurter, C., Marriott, K., Dwyer, T.: Towards unambiguous edge bundling: investigating confluent drawings for network visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 541–550 (2017). Scholar
  3. 3.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994). Scholar
  4. 4.
    Benzaken, C., Crama, Y., Duchet, P., Hammer, P.L., Maffray, F.: More characterizations of triangulated graphs. J. Graph Theory 14(4), 413–422 (1990). Scholar
  5. 5.
    Brandstädt, A., Spinrad, J., Stewart, L.: Bipartite permutation graphs are bipartite tolerance graphs. Congressus Numerantium 58, 165–174 (1987)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). Scholar
  7. 7.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000). Scholar
  8. 8.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1), 31–52 (2005). Scholar
  9. 9.
    Ehrlich, G., Even, S., Tarjan, R.E.: Intersection graphs of curves in the plane. J. Comb. Theory Ser. B 21(1), 8–20 (1976). Scholar
  10. 10.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006). Scholar
  11. 11.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47, 439–452 (2007). Scholar
  12. 12.
    Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek, K.: Strict confluent drawing. J. Comput. Geom. 7(1), 22–46 (2016). Scholar
  13. 13.
    Eppstein, D., Simons, J.A.: Confluent Hasse diagrams. J. Graph Algorithms Appl. 17(7), 689–710 (2013). Scholar
  14. 14.
    Förster, H., Ganian, R., Klute, F., Nöllenburg, M.: On strict (outer-)confluent graphs. CoRR abs/1908.05345 (2019).
  15. 15.
    Gabor, C.P., Supowit, K.J., Hsu, W.L.: Recognizing circle graphs in polynomial time. J. ACM 36(3), 435–473 (1989). Scholar
  16. 16.
    Gavenčiak, T., Jelínek, V., Klavík, P., Kratochvíl, J.: Cops and robbers on intersection graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 174–184. Springer, Heidelberg (2013).,
  17. 17.
    Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972). Scholar
  18. 18.
    Gavril, F.: Maximum weight independent sets and cliques in intersection graphs of filaments. Inf. Process. Lett. 73(5–6), 181–188 (2000). Scholar
  19. 19.
    Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012). Scholar
  20. 20.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier, Amsterdam (2004). Scholar
  21. 21.
    Golumbic, M.C., Monma, C.L., Trotter Jr., W.T.: Tolerance graphs. Discrete Appl. Math. 9(2), 157–170 (1984). Scholar
  22. 22.
    Golumbic, M.C., Rotem, D., Urrutia, J.: Comparability graphs and intersection graphs. Discrete Math. 43(1), 37–46 (1983). Scholar
  23. 23.
    Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(3), 423–443 (2000). Scholar
  24. 24.
    Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Alternation graphs. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 191–202. Springer, Heidelberg (2011). Scholar
  25. 25.
    Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006). Scholar
  26. 26.
    Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J. Comput. 14(1), 224–231 (1985). Scholar
  27. 27.
    Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and confluent drawings. Algorithmica 47(4), 465–479 (2007). Scholar
  28. 28.
    Kratochvíl, J.: String graphs. I. The number of critical nonstring graphs is infinite. J. Comb. Theory Ser. B 52(1), 53–66 (1991). Scholar
  29. 29.
    Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Can. J. Math. 23(1), 160–175 (1971). Scholar
  30. 30.
    Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory, pp. 139–146 (1969)Google Scholar
  31. 31.
    Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. ACM 29(3), 623–641 (1982). Scholar
  32. 32.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory, vol. 6. JHU Press, Baltimore (2001). Scholar
  33. 33.
    Wegner, G.: Eigenschaften der Nerven homologisch-einfacher Familien im Rn. Ph.D. thesis, Universität Göttingen (1967)Google Scholar
  34. 34.
    Yu, C.W., Chen, G.H.: Efficient parallel algorithms for doubly convex-bipartite graphs. Theoret. Comput. Sci. 147(1–2), 249–265 (1995). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of TübingenTübingenGermany
  2. 2.Algorithms and Complexity GroupTU WienViennaAustria

Personalised recommendations