Multi-level Graph Drawing Using Infomap Clustering

  • Seok-Hee HongEmail author
  • Peter Eades
  • Marnijati Torkel
  • Ziyang Wang
  • David Chae
  • Sungpack Hong
  • Daniel Langerenken
  • Hassan Chafi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11904)


Infomap clustering finds the community structures that minimize the expected description length of a random walk trajectory; algorithms for infomap clustering run fast in practice for large graphs. In this paper we leverage the effectiveness of Infomap clustering combined with the multi-level graph drawing paradigm. Experiments show that our new Infomap based multi-level algorithm produces good visualization of large and complex networks, with significant improvement in quality metrics.


  1. 1.
    Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature 324, 446 (1986)CrossRefGoogle Scholar
  2. 2.
    Bartel, G., Gutwenger, C., Klein, K., Mutzel, P.: An experimental evaluation of multilevel layout methods. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 80–91. Springer, Heidelberg (2011). Scholar
  3. 3.
    Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The open graph drawing framework (OGDF). In: Handbook on Graph Drawing and Visualization, pp. 543–569 (2013)Google Scholar
  4. 4.
    Eades, P., Hong, S.-H., Klein, K., Nguyen, A.: Shape-based quality metrics for large graph visualization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 502–514. Springer, Cham (2015). Scholar
  5. 5.
    Frishman, Y., Tal, A.: Multi-level graph layout on the GPU. IEEE Trans. Vis. Comput. Graph. 13(6), 1310–1319 (2007)CrossRefGoogle Scholar
  6. 6.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw.: Pract. Exper. 21(11), 1129–1164 (1991)Google Scholar
  7. 7.
    Gajer, P., Kobourov, S.G.: GRIP: graph drawing with intelligent placement. J. Graph Algorithms Appl. 6(3), 203–224 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  9. 9.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). Scholar
  10. 10.
    Hadany, R., Harel, D.: A multi-scale algorithm for drawing graphs nicely. Discrete Appl. Math. 113(1), 3–21 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica J. 10(1), 37–71 (2005)Google Scholar
  12. 12.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014). Scholar
  14. 14.
    Koren, D., Harel, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms Appl. 6(3), 179–202 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)CrossRefGoogle Scholar
  16. 16.
    Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel maxent-stress optimization. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 30–43. Springer, Cham (2015). Scholar
  17. 17.
    Nguyen, A., Hong, S.: k-core based multi-level graph visualization for scale-free networks. In: 2017 IEEE Pacific Visualization Symposium, PacificVis 2017, Seoul, South Korea, 18–21 April 2017, pp. 21–25 (2017)Google Scholar
  18. 18.
    Quigley, A., Eades, P.: FADE: graph drawing, clustering, and visual abstraction. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg (2001). Scholar
  19. 19.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  20. 20.
    Walshaw, C., et al.: A multilevel algorithm for force-directed graph-drawing. J. Graph Algorithms Appl. 7(3), 253–285 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Seok-Hee Hong
    • 1
    Email author
  • Peter Eades
    • 1
  • Marnijati Torkel
    • 1
  • Ziyang Wang
    • 1
  • David Chae
    • 1
  • Sungpack Hong
    • 2
  • Daniel Langerenken
    • 2
  • Hassan Chafi
    • 2
  1. 1.University of SydneySydneyAustralia
  2. 2.Oracle Research LabBelmontUSA

Personalised recommendations