Advertisement

Precipitation Ensemble Data Assimilation in NWP Models

Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 69)

Abstract

This chapter describes the authors’ effort on ensemble data assimilation of satellite precipitation measurements. The Local Ensemble Transform Kalman Filter (LETKF) was implemented with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), and JAXA’s GSMaP (Global Satellite Mapping of Precipitation) data were assimilated at 112-km resolution.

Keywords

Precipitation Numerical weather prediction Data assimilation Local Ensemble Transform Kalman Filter (LETKF) Nonhydrostatic Icosahedral Atmospheric Model (NICAM) JAXA RIKEN GSMaP TRMM TMPA NCEP 

References

  1. Campbell, W. F., Satterfield, E., Ruston, B., & Baker, N. (2017). Accounting for correlated observation error in a dual formulation 4D-variational data assimilation system. Monthly Weather Review, 145, 1019–1032.  https://doi.org/10.1175/MWR-D-16-0240.1.CrossRefGoogle Scholar
  2. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.  https://doi.org/10.1175/JHM560.1.CrossRefGoogle Scholar
  3. Hunt, B. R., Kostelich, E. J., & Szunyogh, I. (2007). Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112–126.  https://doi.org/10.1016/j.physd.2006.11.008.CrossRefGoogle Scholar
  4. Kotsuki, S., Terasaki, K., & Miyoshi, T. (2014). GPM/DPR precipitation compared with a 3.5-km-resolution NICAM simulation. SOLA, 10, 204–209.  https://doi.org/10.2151/sola.2014-043.CrossRefGoogle Scholar
  5. Kotsuki, S., Miyoshi, T., Terasaki, K., Lien, G.-Y., & Kalnay, E. (2017a). Assimilating the global satellite mapping of precipitation data with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). Journal of Geophysical Research, 122, 631–650.  https://doi.org/10.1002/2016JD025355.CrossRefGoogle Scholar
  6. Kotsuki, S., Ota, Y., & Miyoshi, T. (2017b). Adaptive covariance relaxation methods for ensemble data assimilation: Experiments in the real atmosphere. Quarterly Journal of the Royal Meteorological Society, 143, 2001–2015.  https://doi.org/10.1002/qj.3060.CrossRefGoogle Scholar
  7. Kotsuki, S., Terasaki, K., Yashiro, H., Tomita, H., Satoh, M., & Miyoshi, T. (2018). Online model parameter estimation with ensemble data assimilation in the real global atmosphere: A case with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the global satellite mapping of precipitation data. Journal of Geophysical Research, 123, 7375–7392.  https://doi.org/10.1029/2017JD028092.CrossRefGoogle Scholar
  8. Lien, G.-Y., Kalnay, E., & Miyoshi, T. (2013). Effective assimilation of global precipitation: Simulation experiments. Tellus A, 65, 1–16.  https://doi.org/10.3402/tellusa.v65i0.19915.CrossRefGoogle Scholar
  9. Lien, G.-Y., Kalnay, E., Miyoshi, T., & Huffman, G. J. (2016a). Statistical properties of global precipitation in the NCEP GFS model and TMPA observations for data assimilation. Monthly Weather Review, 144, 663–679.  https://doi.org/10.1175/MWR-D-15-0150.1.CrossRefGoogle Scholar
  10. Lien, G.-Y., Miyoshi, T., & Kalnay, E. (2016b). Assimilation of TRMM multisatellite precipitation analysis with a low-resolution NCEP global forecasting system. Monthly Weather Review, 144, 643–661.  https://doi.org/10.1175/MWR-D-15-0149.1.CrossRefGoogle Scholar
  11. Miyoshi, T. (2005). Ensemble Kalman filter experiments with a primitive-equation global model. Ph.D. dissertation, University of Maryland, College Park, 197 pp. Available at https://drum.lib.umd.edu/handle/1903/3046, last accessed 23 Nov 2018.
  12. Miyoshi, T. (2011). The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman filter. Monthly Weather Review, 139, 1519–1535.  https://doi.org/10.1175/2010MWR3570.1.CrossRefGoogle Scholar
  13. Miyoshi, T., & Yamane, S. (2007). Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Monthly Weather Review, 135, 3841–3861.  https://doi.org/10.1175/2007MWR1873.1.CrossRefGoogle Scholar
  14. Miyoshi, T., Yamane, S., & Enomoto, T. (2007). Localizing the error covariance by physical distances within a local ensemble transform Kalman filter (LETKF). SOLA, 3, 89–92.  https://doi.org/10.2151/sola.2007-023.CrossRefGoogle Scholar
  15. Miyoshi, T., Sato, Y., & Kadowaki, T. (2010). Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Monthly Weather Review, 138, 2846–2866.  https://doi.org/10.1175/2010MWR3209.1.CrossRefGoogle Scholar
  16. Miyoshi, T., Kalnay, E., & Li, H. (2013). Estimating and including observation-error correlations in data assimilation. Inverse Problems in Science and Engineering, 21, 387–398.  https://doi.org/10.1080/17415977.2012.712527.CrossRefGoogle Scholar
  17. Otsuka, S., Kotsuki, S., & Miyoshi, T. (2016). Nowcasting with data assimilation: A case of global satellite mapping of precipitation. Weather and Forecasting, 31, 1409–1416.  https://doi.org/10.1175/WAF-D-16-0039.1.CrossRefGoogle Scholar
  18. Satoh, M., Tomita, H., Yashiro, H., Miura, H., Kodama, C., Seiki, T., Noda, A. T., Yamada, Y., Goto, D., Sawada, M., Miyoshi, T., Niwa, Y., Hara, M., Ohno, T., Iga, S., Arakawa, T., Inoue, T., & Kubokawa, H. (2014). The non-hydrostatic icosahedral atmospheric model: Description and development. Progress in Earth and Planetary Science, 1, 18.  https://doi.org/10.1186/s40645-014-0018-1.CrossRefGoogle Scholar
  19. Saunders, R., Hocking, J., Rundle, D., Rayer, P., Matricardi, M., Geer, A., Lupu, C., Brunel, P., & Vidot, J. (2013). RTTOV-11: Science and validation report. NWP-SAF Rep., UK Met Office, 62 pp. Available at https://nwpsaf.eu/oldsite/deliverables/rtm/docs_rttov11/rttov11_svr.pdf, last accessed 23 Nov 2018.
  20. Terasaki, K., & Miyoshi, T. (2014). Data assimilation with error-correlated and non-orthogonal observations: Experiments with the Lorenz-96 model. SOLA, 10, 210–213.  https://doi.org/10.2151/sola.2014-044.CrossRefGoogle Scholar
  21. Terasaki, K., & Miyoshi, T. (2017). Assimilating AMSU-A radiances with the NICAM-LETKF. Journal of the Meteorological Society of Japan, 95, 433–446.  https://doi.org/10.2151/jmsj.2017-028.CrossRefGoogle Scholar
  22. Terasaki, K., Sawada, M., & Miyoshi, T. (2015). Local ensemble transform Kalman filter experiments with the nonhydrostatic icosahedral atmospheric model NICAM. SOLA, 11, 23–26.  https://doi.org/10.2151/sola.2015-006.CrossRefGoogle Scholar
  23. Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K., Aonashi, K., Inoue, T., Takahashi, N., Iguchi, T., Kachi, M., Oki, R., Morimoto, T., & Kawasaki, Z.-I. (2009). A Kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society of Japan, 87A, 137–151.  https://doi.org/10.2151/jmsj.87A.137.CrossRefGoogle Scholar
  24. Weston, P. P., Bell, W., & Eyre, J. R. (2014). Accounting for correlated error in the assimilation of high-resolution sounder data. Quarterly Journal of the Royal Meteorological Society, 140, 2420–2429.  https://doi.org/10.1002/qj.2306.CrossRefGoogle Scholar
  25. Yashiro, H., Terasaki, K., Miyoshi, T., & Tomita, H. (2016). Performance evaluation of a throughput-aware framework for ensemble data assimilation: The case of NICAM-LETKF. Geoscientific Model Development, 9, 2293–2300.  https://doi.org/10.5194/gmd-9-2293-2016.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.RIKEN Center for Computational ScienceKobeJapan
  2. 2.Center for Environmental Remote SensingChiba UniversityChibaJapan
  3. 3.Research and Development CenterCentral Weather BureauTaipeiTaiwan
  4. 4.Satellite Observation CenterNational Institute for Environmental StudiesTsukubaJapan
  5. 5.Atmosphere and Ocean Research Institute (AORI)The University of TokyoChibaJapan
  6. 6.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations