Ordered Colloidal Crystals Fabrication and Studies on the Properties of Poly (Styrene–Butyl Acrylate–Acrylic Acid) and Polystyrene Latexes

  • I. H. IfijenEmail author
  • E. U. IkhuoriaEmail author
  • S. O. Omorogbe
  • A. I. Aigbodion
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Monodisperse poly(styrene–butyl acrylate–acrylic acid) (P(St–BA–AA)) and polystyrene (PS) colloidal suspensions were prepared using emulsion polymerization technique with a view to study their variation in properties. The P(St–BA–AA) latex had a slightly lower glass transition temperature (Tg) (106 °C) compared to the PS microspheres (104 °C). TEM analysis revealed a core-shell morphology in the P(St–BA–AA) latex particles, as compared to the PS particles. The synthesized latex suspensions were used to fabricate mono- and binary-sized colloidal crystals via the evaporation-induced self-assembly approach. SEM/AFM analyses showed spherically shaped particles that readily assemble into a closely-packed three dimensional highly periodic pattern with hexagonal symmetry. Also, the smaller sized P(St–BA–AA) particles (197.3 nm) in the binary crystals arranged themselves in a well-ordered manner around the larger sized PS particles (404.9 nm). The results showed that the modification made on the functional group of PS by polymerizing with butyl acrylate and acrylic acid produced P(St–BA–AA) latex with more improved properties compared to the as-synthesized PS.


Poly(styrene–butyl acrylate–acrylic acid) Butyl acrylate Acrylic acid Colloidal crystals, binary colloidal crystal 



This investigation was supported by the World Academy of Sciences (TWAS). The authors also wish to appreciate Mr. and Mrs. Ifijen for their support.

Competing Interests

The authors declare no conflicts of interest.


  1. 1.
    Arsenault AC, Puzzo DP, Manners I, Ozin GA (2007) Photonic crystal full color displays. Nat Photon 1(8):468–472CrossRefGoogle Scholar
  2. 2.
    Vermolen ECM, Kuijk A, Filion LC, Hermes M, Thijssen JHJ, Dijkstra M et al (2009) Fabrication of large binary colloidal crystals with a NaCl structure. Proc Natl Acad Sci USA 106:16063–16067CrossRefGoogle Scholar
  3. 3.
    Ríos-Osuna LA, Licea-Claverie A, Paraguay-Delgado F, Cortez-Lemus NA (2016) Synthesis of poly(styrene-acrylates-acrylic acid) microspheres and their chemical composition towards colloidal crystal films. Int J Polymer Sci 2016:10CrossRefGoogle Scholar
  4. 4.
    Tian E, Wang J, Zheng Y, Song Y, Jiang L, Zhu D (2008) Colorful humidity sensitive photonic crystal hydrogel. J Mater Chem 18:1116–1122CrossRefGoogle Scholar
  5. 5.
    Chung YW, Leu IC, Lee JH, Hon MH (2006) Influence of humidity on the fabrication of high-quality colloidal crystals via a capillary-enhanced process. Langmuir 22:6454–6460CrossRefGoogle Scholar
  6. 6.
    Sheibat-Othman N, Burne T, Charcosset C, Fessi H (2008) Preparation of pH-sensitive particles by membrane contactor. Colloids Surf A 315:13–22CrossRefGoogle Scholar
  7. 7.
    Wang J, Wen Y, Ge H, Sun Z, Zheng Y, Song Y et al (2006) Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol Chem Phys 207:596–604CrossRefGoogle Scholar
  8. 8.
    Xie C, Qiu T, Li J, Zhang H, Li X, Tuo X (2017) Nanoaramid dressed latex particles: the direct synthesis via pickering emulsion polymerization. Langmuir 33:8043–8051CrossRefGoogle Scholar
  9. 9.
    Tan M, Shi Y, Fu Z, Yang W (2018) In situ synthesis of diblock copolymer nano-assemblies via dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polymer Chem 9:1082–1094CrossRefGoogle Scholar
  10. 10.
    Chen X, Ding Y, Ren D, Chen Z (2016) Green synthesis of polymeric microspheres that are monodisperse and superhydrophobic, via quiescent redox-initiated precipitation polymerization. RSC Adv 6:27846–27851CrossRefGoogle Scholar
  11. 11.
    Yoon SB, Kim JY, Kim JH, Park SG, Kim JY, Lee CW et al (2006) Template synthesis of nanostructured silica with hollow core and mesoporous shell structures. Curr Appl Phys 6:1059–1063CrossRefGoogle Scholar
  12. 12.
    León-Bermúdez A-Y, Salazar R (2008) Synthesis and characterization of the polystyrene—asphaltene graft copolymer by FTIR spectroscopy. CT&F—Ciencia, Tecnología y Futuro 3:157–167Google Scholar
  13. 13.
    Rouabah F, Dadache D, Haddaoui N (2012) Thermophysical and mechanical properties of polystyrene: influence of free quenching. ISRN Polymer Sci 2012:8CrossRefGoogle Scholar
  14. 14.
    Yohanala F, Dewa RM, Quarta K, Widiyastuti, Winardi S (2015) Preparation of polystyrene spheres using surfactant-free emulsion polymerization. Modern Appl Sci 9:121–126Google Scholar
  15. 15.
    Berruezo M, Ludueña LN, Rodriguez E, Alvarez VA (2013) Preparation and characterization of polystyrene/starch blends for packaging applications. J Plast Film Sheeting 30:141–161CrossRefGoogle Scholar
  16. 16.
    Meng Y, Tang B, Xiu J, Zheng X, Ma W, Ju B et al (2015) Simple fabrication of colloidal crystal structural color films with good mechanical stability and high hydrophobicity. Dyes Pigm 123:420–426CrossRefGoogle Scholar
  17. 17.
    Wang M, Meng F, Wu H, Wang J (2016) Photonic crystals with an eye pattern similar to peacock tail feathers. Crystals 6:99CrossRefGoogle Scholar
  18. 18.
    Fang J, Xuan Y, Li Q (2010) Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystalsGoogle Scholar
  19. 19.
    Duan G, Zhang C, Li A, Yang X, Lu L, Wang X (2008) Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale Res Lett 3:118–122CrossRefGoogle Scholar
  20. 20.
    Singho ND, Lah NAC, Johan MR, Ahmad R (2012) FTIR studies on silver-poly(Methylmethacrylate) nanocomposites via in-situ polymerization technique. Int J Electrochem Sci, 5596–603Google Scholar
  21. 21.
    Ifijen HI, Ikhuoria EU, Omorogbe SO (2019) Correlative studies on the fabrication of poly (styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J Dispers Sci Technol, 1–8Google Scholar
  22. 22.
    Hemalatha P, Veeraiah MK, Kumar SP, Madegowda NM, Manju M, Reactivity ratios of n-vinylpyrrolidone—acrylic acid copolymer. Am J Polymer Sci, 4:15–23Google Scholar
  23. 23.
    Ikhuoria EU, Omorogbe SO, Sone BT, Nuru ZY, Khamlich S, Maaza M (2018) Raspberry-like and other hexagonal close-packed morphologies of P(St-MMA-AA) particles obtained from different emulsifiers for photonic applications. J Mod Opt 65:1817–1826CrossRefGoogle Scholar
  24. 24.
    Omorogbe SO, Ikhuoria EU, Ifijen HI, Simo A, Aigbodion A, Maaza M (2019) Fabrication of monodispersed needle-sized hollow core polystyrene microspheres. Springer International Publishing, Cham, pp 155–164Google Scholar
  25. 25.
    Ifijen HI, Ikhuoria EU, Omorogbe SO (2019) Correlative studies on the fabrication of poly(styrene-methyl-methacrylate-acrylic acid) colloidal crystal films. J Dispers Sci Technol, 1–8Google Scholar
  26. 26.
    Hiorns R (2000) In: Brandup J, Immergut EH, Grulke EA (eds), A Abe, DR Bloch (Assoc eds) Polymer handbook, 4th edn. Wiley, New York, (1999), pp 2250, price £210 ISBN 0-471-16628-6. Polym Int 49:807Google Scholar
  27. 27.
    Ifijen IH, Maliki M, Ovonramwen OB, Aigbodion AI, Ikhuoria EU (2019) Brilliant coloured monochromatic photonic crystals films generation from poly(styrene-butyl acrylate-acrylic acid) latex. J Appl Sci Environ Manage 23:1661–1664CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Product Development LaboratoryRubber Research Institute of NigeriaBenin CityNigeria
  2. 2.Department of ChemistryUniversity of BeninBenin CityNigeria

Personalised recommendations