Tree Structure

  • Annikki Mäkelä
  • Harry T. Valentine


Interactions between structure, function and survival under natural selection provide a plausible explanation for the remarkable regularity observed in tree structures, regardless of the apparent wide variability of form between species and individuals. The regularity has been described and modelled in a number of ways, ranging from simple empirical observation to complicated mathematical evolutionary optimisation models. In this chapter, we introduce some of the key ideas about structural regularity that have been helpful in modelling the allocation of growth to different tree components in material balance models.


  1. Bar-Yam Y (2012) Dynamics of complex systems. Perseus Books, Dordrecht/London/New YorkGoogle Scholar
  2. Berninger F, Coll L, Vanninen P, Mäkelä A, Palmroth S, Nikinmaa E (2005) Effects of tree size and position on pipe model ratios in scots pine. Can J For Res 35:1294–1304CrossRefGoogle Scholar
  3. Borchert F, Slade NA (1981) Bifurcation ratios and the adaptive geopmetry of trees. Bot Gaz 142:394–401CrossRefGoogle Scholar
  4. Cajander AK (1949) Finnish forest types and their significance. Acta Forestalia Fennica 56:1–71Google Scholar
  5. Carlson WC, Harrington CA (1987) Cross-sectional area relationships in root systems of loblolly and shortleaf pine. Can J For Res 17(6):556–558CrossRefGoogle Scholar
  6. Chen HYH, Klinka K, Kayahara GJ (1996) Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings. Can J For Res 26:1149–1157CrossRefGoogle Scholar
  7. Chiba Y, Fujimori T, Kiyono Y (1988) Another interpretation of the profile diagram and its availability with consideration of the growth process of forest trees. J Jap For Soc 70:245–254Google Scholar
  8. de Reffye P, Houllier F, Blaise F, Barthélémy D, Dauzat J, Auclair D (1995) A model simulating above- and belowground tree architecture with agroforestry applications. Agroforestry Syst 30:175–197CrossRefGoogle Scholar
  9. Duursma RA, Mäkelä A (2007) Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree Physiol 27:859–870CrossRefGoogle Scholar
  10. Duursma RA, Mäkelä A, Reid DEB, Jokela EJ, Porté A, Roberts SD (2010) Branching networks in gymnosperm trees: implications for metabolic scaling. Funct Ecol 24:723–730CrossRefGoogle Scholar
  11. Duursma RA, Falster DS, Valladares F, Sterck FJ, Pearcy RW, Lusk CH, Sendall KM, Nordenstahl M, Houter NC, Atwell BJ, Kelly N, Kelly JWG, Liberloo M, Tissue DT, Medlyn BE, Ellsworth DS (2011) Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. New Phytol 193:397–408CrossRefGoogle Scholar
  12. Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, BerlinCrossRefGoogle Scholar
  13. Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in norway spruce and scots pine stands. Tree Physiol 27:1493–1504CrossRefGoogle Scholar
  14. Honda H (1971) Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol 31:331–338CrossRefGoogle Scholar
  15. Honda H, Tomlinson PB, Fisher JB (1982) Two geometrical models of branching of botanical trees. Ann Bot 49:1–11CrossRefGoogle Scholar
  16. Horn HS (2000) Twigs, trees, and the dynamics of carbon in the landscape. In: Brown JH, West GB (eds) Scaling in biology. Oxford University Press, Oxford, pp 199–220Google Scholar
  17. Hu M, Lehtonen A, Minunno F, Mäkelä A (2020) Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Manuscript submitted to Ann For SciGoogle Scholar
  18. Ingestad T, Ågren GI (1992) Theories and methods on plant nutrition and growth. Physiol Plant 84:177–184CrossRefGoogle Scholar
  19. Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209CrossRefGoogle Scholar
  20. King D, Loucks OL (1978) The theory of tree bole and branch form. Radiat Environ Biophys 15:141–165CrossRefGoogle Scholar
  21. Koivisto P (1959) Growth and yield tables (in Finnish). Comm Inst Forestalis Fenniae 51(8):1–49Google Scholar
  22. Kozlowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 8:283–289CrossRefGoogle Scholar
  23. Landsberg JJ, Mäkelä A, Sievänen R, Kukkola M (2005) Analysis of biomass accumulation and stem size distributions over long periods in managed stands of Pinus sylvestris in Finland using the 3-PG model. Tree Phys 25:781–792CrossRefGoogle Scholar
  24. Lang ARG (1991) Application of some of Cauchy’s theorems to the estimation of surface areas of leaves, needles and branches of plants, and light transmittance. Agric For Meteorol 55:191–212CrossRefGoogle Scholar
  25. Larson PR (1965) Stem form of young Larix as influenced by wind and pruning. For Sci 11: 412–423Google Scholar
  26. Lehnebach R, Beyer R, Letort V, Heuret P (2018) The pipe model theory half a century on: a review. Ann Bot 121:773–795CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lehtonen A (2005) Estimating foliage biomass in scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Tree Physiol 25:803–811CrossRefGoogle Scholar
  28. Lehtonen A, Heikkinen J, Petersson H, Tupek B, Liski E, Mäkelä A (2020) Scots pine and Norway spruce foliage biomass in Finland and Sweden–testing traditional models vs. the pipe model theory. Can J For Res 50:146–154. Scholar
  29. Litton CM, Kauffmann JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40:313–320CrossRefGoogle Scholar
  30. Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905CrossRefGoogle Scholar
  31. Mäkelä A, Valentine HT (2006a) Crown ratio influences allometric scaling in trees. Ecology 87(12):2967–2972CrossRefGoogle Scholar
  32. Mäkelä A, Valentine HT (2006b) The quarter-power scaling model does not imply size invariant hydraulic resistance in plants. J Theor Biol 243:283–285CrossRefGoogle Scholar
  33. Mandelbrot B (1983) The fractal geometry of nature. W. H. Freeman, New YorkCrossRefGoogle Scholar
  34. Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Sveriges Lantbruksuniversitet Rapporter-Skog 246:1–73Google Scholar
  35. McMahon TA (1973) Size and shape in biology. Science 179:1201–1204CrossRefGoogle Scholar
  36. McMahon TA, Kronaurer RE (1976) Tree structures: deducing the principle of mechanical design. J Theor Biol 59:443–466CrossRefGoogle Scholar
  37. Monsi M, Saeki T (1953) Uber den lichtfaktor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jap J Bot 14:22–52Google Scholar
  38. Morgan J, Cannell MGR (1994) Shape of tree stems: a re-examination of the uniform stress hypothesis. Tree Physiol 14:49–62CrossRefGoogle Scholar
  39. Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WMJ, Thivolle-Cazat A, Bronisz K, Merganic J, Decuyper M, Alberdi I, Astrup R, Mohren F, Hasenauer H (2016) Comparison of carbon estimation methods for european forests. For Ecol Manage 361:397–420CrossRefGoogle Scholar
  40. Nikinmaa E, Goulet J, Messier C, Sievänen R, Perttunen J, Lehtonen M (2003) Shoot growth and crown development; the effect of crown position in 3D simulations. Tree Physiol 23:129–136CrossRefGoogle Scholar
  41. Nikinmaa E, Hölttä T, Sievänen R (2014) Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Ann Bot 114:653–666CrossRefPubMedPubMedCentralGoogle Scholar
  42. Niklas KJ (1994) Plant allometry. The Univeristy of Chicago Press, ChicagoGoogle Scholar
  43. Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227CrossRefGoogle Scholar
  44. Nilson T (1999) Inversion of gap frequency data in forest stands. Agric For Meteorol 98/99: 437–448CrossRefGoogle Scholar
  45. Oker-Blom P, Kellomäki S (1982) Theoretical computations on the role of crown shape in the absorption of light by forest trees. Math Biosci 59:291–311CrossRefGoogle Scholar
  46. Oker-Blom P, Pukkala T, Kuuluvainen T (1989) Relationship between radiation interception and photosynthesis in forest canopies: effect of stand structure and latitude. Ecol Modell 49:73–87CrossRefGoogle Scholar
  47. Osawa A, Ishizuka M, Kanazawa Y (1991) A profile theory of tree growth. For Ecol Manage 41:33–63CrossRefGoogle Scholar
  48. Patrick Bentley L, Stegen JC, Savage VM, Smith DD, von Allmen EI, Sperry JS, Reich PB, Enquist BJ (2013) An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol Lett 16:1069–1078CrossRefGoogle Scholar
  49. Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800CrossRefGoogle Scholar
  50. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, BerlinCrossRefGoogle Scholar
  51. Repola J (2009) Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn 43:625–647CrossRefGoogle Scholar
  52. Richardson AD, ZuDohna H (2003) Predicting root biomass from branching patterns of douglas-fir root systems. Oikos 100(1):96–104CrossRefGoogle Scholar
  53. Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form – the pipe model theory. I. Basic analysis. Jap J Ecol 14:97–105Google Scholar
  54. Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form – the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jap J Ecol 14:133–139Google Scholar
  55. Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399–412CrossRefGoogle Scholar
  56. Tomlinson PB (1983) Tree architecture. New approaches help to define the elusive biological property of tree form. Am Sci 71:141–149PubMedGoogle Scholar
  57. Valentine HT, Mäkelä A (2005) Bridging process-based and empirical approaches to modeling tree growth. Tree Physiol 25:769–779CrossRefGoogle Scholar
  58. Valentine HT, Green EJ, Mäkelä A, Amateis RL, Mäkinen H, Ducey MJ (2012) Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees 26:469–478CrossRefGoogle Scholar
  59. Valentine HT, Baldwin VC Jr, Gregoire TG, Burkhart HE (1994a) Surrogates for foliar dry matter in loblolly pine. For Sci 40(3):576–585Google Scholar
  60. Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830CrossRefGoogle Scholar
  61. Wang C (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Can J For Res 222:9–16Google Scholar
  62. Waring RH, Schroeder PE, Oren R (1982) Application of the pipe model theory to predict canopy leaf area. Can J For Res 12:556–560CrossRefGoogle Scholar
  63. West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667CrossRefGoogle Scholar
  64. West GB, Brown JH, Enquist BJ (1997a) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679CrossRefGoogle Scholar
  65. West GB, Brown JH, Enquist BJ (1997b) A general model for the origin of allometric scaling laws in biology. Science 276:122–126CrossRefPubMedPubMedCentralGoogle Scholar
  66. Williams CJ, LePage BA, Vann DR, Tange T, Ikeda H, Ando M, Kusakabe T, Tsuzuki H, Sweda T (2003) Structure, allometry, and biomass of plantation Metasequoia glyptostroboides in Japan. For Ecol Manage 180:287–301CrossRefGoogle Scholar
  67. Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J For Res 28:106–114CrossRefGoogle Scholar
  68. Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:1–63Google Scholar
  69. Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56: 2286–2295CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Annikki Mäkelä
    • 1
  • Harry T. Valentine
    • 2
  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.USDA Forest ServiceNorthern Research StationDurhamUSA

Personalised recommendations