Advertisement

Management of Humanitarian Logistics in the Stages Prior to Natural Disasters in Canton Ambato, Ecuador

  • Santiago Velastegui
  • Rosa Galleguillos-Pozo
  • Cesar Rosero
  • Marcelo V. GarciaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1099)

Abstract

In recent years in Ecuador’s country, an increasing number of domestic natural disasters has caused losses of lives and material. This study aims to generate Humanitarian Logistics for the canton Ambato in Ecuador. The safe zones are identified for defining the collection centers and the public resources to be available for each parish based on the Analytic hierarchy process (AHP) and Geographic Information System (GIS) methods. As a result of this technique the main collection center for the canton Ambato is determined, allowing the movement of humanitarian assistance in the shortest time possible due to the accessibility of transport routes, available space, organization, own resources and travel time to every location.

Keywords

Humanitarian Logistics Catastrophes Analytic hierarchy process (AHP) Center of Gravity ArcGIS 

References

  1. 1.
    Ratna, S., et al.: A hybrid MCDM model for supplier selection in supply chain. Int. J. Mech. Prod. Eng. Res. Dev. 9(3), 143–150 (2019).  https://doi.org/10.24247/ijmperdjun201915. http://tjprc.org/publishpapers/2-67-1555150838-15.IJMPERDJUN201915.pdfMathSciNetCrossRefGoogle Scholar
  2. 2.
    Anjomshoae, A., Hassan, A., Wong, K.Y.: An integrated AHP-based scheme for performance measurement in humanitarian supply chains. Int. J. Productivity Perform. Manag. 68(5), 938–957 (2019).  https://doi.org/10.1108/IJPPM-04-2018-0132. https://www.emeraldinsight.com/doi/10.1108/IJPPM-04-2018-0132CrossRefGoogle Scholar
  3. 3.
    Badina, S.V.: Socio-economic potential of municipalities in the context of natural risk (case study – Southern Siberian regions). In: IOP Conference Series: Earth and Environmental Science, vol. 190, October 2018.  https://doi.org/10.1088/1755-1315/190/1/012001. http://stacks.iop.org/1755-1315/190/i=1/a=012001?key=crossref.fd4b96081a9491c64fe74f90941cf771. 012001CrossRefGoogle Scholar
  4. 4.
    Beatty, T.K.M., Shimshack, J.P., Volpe, R.J.: Disaster preparedness and disaster response: evidence from sales of emergency supplies before and after hurricanes. J. Assoc. Environ. Resour. Economists 6(4), 633–668 (2019).  https://doi.org/10.1086/703379. https://www.journals.uchicago.edu/doi/10.1086/703379CrossRefGoogle Scholar
  5. 5.
    Borensztein, E., Cavallo, E., Jeanne, O.: The welfare gains from macro-insurance against natural disasters. J. Dev. Econ. 124, 142–156 (2017).  https://doi.org/10.1016/j.jdeveco.2016.08.004. https://linkinghub.elsevier.com/retrieve/pii/S0304387816300621CrossRefGoogle Scholar
  6. 6.
    Caruso, G.D.: The legacy of natural disasters: the intergenerational impact of 100 years of disasters in Latin America. J. Dev. Econ. 127, 209–233 (2017).  https://doi.org/10.1016/j.jdeveco.2017.03.007. https://linkinghub.elsevier.com/retrieve/pii/S0304387817300317CrossRefGoogle Scholar
  7. 7.
    d’Ercole, R., Trujillo, M., Zucchelli, M., Portaluppi, C.: Amenazas, vulnerabilidad, capacidades y riesgo en el Ecuador: los desastres, un reto para el desarrollo. Cooperazione Internazionale (COOPI); Institut de Recherche pour le Développement (IRD); OXFAM GB (2003)Google Scholar
  8. 8.
    Ergu, D., Kou, G., Shi, Y., Shi, Y.: Analytic network process in risk assessment and decision analysis. Comput. Oper. Res. 42, 58–74 (2014).  https://doi.org/10.1016/j.cor.2011.03.005. http://linkinghub.elsevier.com/retrieve/pii/S0305054811000785MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Geofisico, I.: Informe Sismico Especial. Technical report 13 (2016). https://www.igepn.edu.ec/servicios/noticias/1317-informe-sismico-especial-n-13-2016
  10. 10.
    Giannakis, M., Papadopoulos, T.: Supply chain sustainability: a risk management approach. Int. J. Production Econ. 171, 455–470 (2016).  https://doi.org/10.1016/j.ijpe.2015.06.032. https://linkinghub.elsevier.com/retrieve/pii/S0925527315002704CrossRefGoogle Scholar
  11. 11.
    Hoque, M., Tasfia, S., Ahmed, N., Pradhan, B.: Assessing spatial flood vulnerability at Kalapara Upazila in Bangladesh using an analytic hierarchy process. Sensors 19(6), 1302 (2019).  https://doi.org/10.3390/s19061302. https://www.mdpi.com/1424-8220/19/6/1302CrossRefGoogle Scholar
  12. 12.
    Hussain, M., Khan, M., Ajmal, M., Sheikh, K.S., Ahamat, A.: A multi-stakeholders view of the barriers of social sustainability in healthcare supply chains: analytic hierarchy process approach. Sustain. Acc. Manag. Policy J. 10(2), 290–313 (2019).  https://doi.org/10.1108/SAMPJ-05-2018-0140/full/htmlCrossRefGoogle Scholar
  13. 13.
    de Ingenieros, C.F.: Comision Permanente de Estudio y Revision del Codigo Sismico de Costa Rica (2005). Codigo Sismico de Costa Rica (2002)Google Scholar
  14. 14.
    Kovacs, G., Moshtari, M.: A roadmap for higher research quality in humanitarian operations: a methodological perspective. Eur. J. Oper. Res. 276(2), 395–408 (2019).  https://doi.org/10.1016/j.ejor.2018.07.052. https://linkinghub.elsevier.com/retrieve/pii/S037722171830674XMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Montagnese, C., Santarpia, L., Buonifacio, M., Nardelli, A., Caldara, A.R., Silvestri, E., Contaldo, F., Pasanisi, F.: European food-based dietary guidelines: a comparison and update. Nutrition 31(7–8), 908–915 (2015).  https://doi.org/10.1016/j.nut.2015.01.002. http://linkinghub.elsevier.com/retrieve/pii/S0899900715000076CrossRefGoogle Scholar
  16. 16.
    Puri, J., Aladysheva, A., Iversen, V., Ghorpade, Y., Brück, T.: What methods may be used in impact evaluations of humanitarian assistance? (2014)Google Scholar
  17. 17.
    Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A.A., McDowell, R.W.: Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma 352, 80–95 (2019).  https://doi.org/10.1016/j.geoderma.2019.05.046. https://linkinghub.elsevier.com/retrieve/pii/S0016706118302805CrossRefGoogle Scholar
  18. 18.
    Skilodimou, H.D., Bathrellos, G.D., Chousianitis, K., Youssef, A.M., Pradhan, B.: Multi-hazard assessment modeling via multi-criteria analysis and GIS: a case study. Environ. Earth Sci. 78(2) (2019).  https://doi.org/10.1007/s12665-018-8003-4
  19. 19.
    Urango-Licona, O.D., Pérez-Ortega, G., Romo-Morales, G.: Aplicacion de las tecnicas de centro de gravedad y AHP para la localizacion de un centro de distribucion de productos industriales en Colombia. Revista CEA 1(2), 79 (2015).  https://doi.org/10.22430/24223182.132. http://revistas.itm.edu.co/ojs/index.php/revista-cea/article/view/132CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Song, J., Peng, J., Wu, J.: Landslides-oriented urban disaster resilience assessment-a case study in ShenZhen. China. Sci. Total Environ. 661, 95–106 (2019).  https://doi.org/10.1016/j.scitotenv.2018.12.074. https://linkinghub.elsevier.com/retrieve/pii/S0048969718349143CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Universidad Tecnica de Ambato, UTAAmbatoEcuador
  2. 2.Universidad Politecnica de Catalunya, UPCBarcelonaSpain
  3. 3.University of Basque Country, UPV/EHUBilbaoSpain

Personalised recommendations