Advertisement

A Bayesian Network Approach to Identity Climate Teleconnections Within Homogeneous Precipitation Regions in Ecuador

  • Renato Ávila
  • Daniela BallariEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1099)

Abstract

Reliable precipitation predictions require an understanding of climate teleconnections over precipitation. In Ecuador, these teleconnections were studied with correlation methods, but multivariate studies with several climatic indexes simultaneously has been less study. The objective of this work is to carry out a multivariate study using Bayesian networks to identify the influence of climate indexes in homogenous precipitation regions in Ecuador. The climate teleconnections, defined as the correlation between precipitation satellite data and climate indexes, as well as the regionalization of seasonality of precipitation were used to learn a Bayesian network in R software. It was characterized the structure and strength of the relationship between the teleconnections and the precipitation. Additionally, three types of belief propagation were used: regions to climate index, climate index to regions, and interactions between indexes. This was useful to determine whether the influence of a climate index is homogeneous throughout the country or varies by region, as well as to identify interactions between different indexes. The results of this study contribute to a better understanding of precipitation in Ecuador, and to promote making evidence-based water resource decisions.

Keywords

Climate teleconnections Bayesian networks Probability propagation 

Notes

Acknowledgements

This study has been financed by the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) through the project CEPRA XII “Spatial representation of climatic teleconnections in the precipitation of Ecuador”.

References

  1. 1.
    Ali, S., Jan, A., Manzoor, et al.: Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agric. Water Manag. 210, 88–95 (2018).  https://doi.org/10.1016/j.agwat.2018.08.009CrossRefGoogle Scholar
  2. 2.
    Sudha, V., Venugopal, K., Ambujam, N.K.: Reservoir operation management through optimization and deficit irrigation, 93–102 (2008).  https://doi.org/10.1007/s10795-007-9041-3CrossRefGoogle Scholar
  3. 3.
    Engler, J., Von Wehrden, H., Baumgärtner, S.: Land use policy determinants of farm size and stocking rate in Namibian commercial cattle farming. Land Use Policy 81, 232–246 (2019).  https://doi.org/10.1016/j.landusepol.2018.10.009CrossRefGoogle Scholar
  4. 4.
    Pratiwi, R., Sukardjo, S.: Effects of rainfall on the population of Shrimps Penaeus Monodon Fabricius in Segara Anakan lagoon, Central Java, Indonesia. 2(3), 156–169 (2018).  https://doi.org/10.11598/btb.2018.25.3.830
  5. 5.
    Abd-elhamid, H.F., Fathy, I., Zelen, M.: Flood prediction and mitigation in coastal tourism areas, a case study: Hurghada, Egypt (2018).  https://doi.org/10.1007/s11069-018-3316-xCrossRefGoogle Scholar
  6. 6.
    Hamududu, B., Killingtveit, A., Engineering, E.: Assessing Climate Change Impacts on Global Hydropower, 305–322 (2012).  https://doi.org/10.3390/en5020305CrossRefGoogle Scholar
  7. 7.
    Liu, Y.-C., Di, P., Chen, S.-H., DaMassa, J.: Relationships of rainy season precipitation and temperature to climate indexes in California: long-term variability and extreme events. J. Clim. 31(5), 1921–1942 (2018).  https://doi.org/10.1175/JCLI-D-17-0376.1CrossRefGoogle Scholar
  8. 8.
    Fierro, A.O.: Relationships between California rainfall variability and large-scale climate drivers. Int. J. Climatol. 34(13), 3626–3640 (2014).  https://doi.org/10.1002/joc.4112CrossRefGoogle Scholar
  9. 9.
    Konapala, G., Valiya, A., Ashok, V.: Teleconnection between low flows and large-scale climate indexes in Texas River basins. Stoch. Environ. Res. Risk Assess. (2017).  https://doi.org/10.1007/s00477-017-1460-6CrossRefGoogle Scholar
  10. 10.
    De la Torre-Gea, G., Soto-Zarazua, G.M., Guevara-Gonzalez, R.G., Rico-Garcia, E.: Bayesian networks for defining relationships among climate factors. Int. J. Phys. Sci. 6(18), 4412–4418 (2011).  https://doi.org/10.1016/j.jmaa.2015.01.055CrossRefGoogle Scholar
  11. 11.
    Lee, J.H., Lee, J., Julien, P.Y.: Global climate teleconnection with rainfall erosivity in South Korea. CATENA 167, 28–43 (2018).  https://doi.org/10.1016/j.catena.2018.03.008CrossRefGoogle Scholar
  12. 12.
    Mendoza, D.E., Samaniego, E.P., Mora, D.E., Espinoza, M.J., Campozano, L.V.: Finding teleconnections from decomposed rainfall signals using dynamic harmonic regressions: a Tropical Andean case study. Clim. Dyn. 1–28 (2018).  https://doi.org/10.1007/s00382-018-4400-3CrossRefGoogle Scholar
  13. 13.
    Correa, M., Bielza, C., Pamies-teixeira, J.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009).  https://doi.org/10.1016/j.eswa.2008.09.024CrossRefGoogle Scholar
  14. 14.
    Das, M., Ghosh, S.K.: A probabilistic approach for weather forecast using spatio-temporal inter-relationships among climate variables. In: 9th International Conference on Industrial and Information Systems, ICIIS 2014 (2015).  https://doi.org/10.1109/ICIINFS.2014.7036528
  15. 15.
    Zeng, Z., Hsieh, W.W., Shabbar, A., Burrows, W.R.: Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrol. Earth Syst. Sci. 15(1), 65–74 (2011).  https://doi.org/10.5194/hess-15-65-2011CrossRefGoogle Scholar
  16. 16.
    Duc, H.N., Rivett, K., MacSween, K., Le-Anh, L.: Association of climate drivers with rainfall in New South Wales, Australia, using Bayesian model averaging. Theor. Appl. Climatol. 127(1–2), 169–185 (2017).  https://doi.org/10.1007/s00704-015-1622-8CrossRefGoogle Scholar
  17. 17.
    Ebert-Uphoff, I., Deng, Y.: A new type of climate network based on probabilistic graphical models: results of boreal winter versus summer. Geophys. Res. Lett. 39(19), L197011. 1–7 (2012)CrossRefGoogle Scholar
  18. 18.
    Vicente-Serrano, S.M., Aguilar, E., Martínez, R., et al.: The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 48(1–2), 405–427 (2017).  https://doi.org/10.1007/s00382-016-3082-yCrossRefGoogle Scholar
  19. 19.
    Blunden, J., Arndt, D.S., Baringer, M.O., et al.: State of the climate in 2010. Bull. Am. Meteorol. Soc. 92(6), S1-S236 (2011).  https://doi.org/10.1175/1520-0477-92.6.S1CrossRefGoogle Scholar
  20. 20.
    Ulloa, J., Ballari, D., Campozano, L., Samaniego, E.: Two-step downscaling of Trmm 3b43 V7 precipitation in contrasting climatic regions with sparse monitoring: the case of Ecuador in Tropical South America. Remote Sens. 9(7), 758 (2017).  https://doi.org/10.3390/rs9070758CrossRefGoogle Scholar
  21. 21.
    Rodríguez, D., Dolado, J.: Redes Bayesianas en la ingeniería del software. CcUahEs 1–21 (2007).  https://doi.org/10.2196/jmir.7.3.e31CrossRefGoogle Scholar
  22. 22.
    Ballari, D., Giraldo, R., Campozano, L., Samaniego, E.: Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: unveiling the spatio-temporal dependencies of precipitation in Ecuador. Int. J. Climatol. 38(8), 3337–3354 (2018).  https://doi.org/10.1002/joc.5504CrossRefGoogle Scholar
  23. 23.
    Das, K., Vyas, O.P.: A suitability study of discretization methods for associative classifiers. Int. J. Comput. Appl. 5(10), 46–51 (2010).  https://doi.org/10.5120/944-1322CrossRefGoogle Scholar
  24. 24.
    López, D.A.G.: Algoritmo de Discretización de Series de Tiempo Basado en Entropía y su Aplicación en Datos Colposcópicos (2007). http://cdigital.uv.mx/bitstream/123456789/32352/1/garcialopezdaniel.pdf
  25. 25.
    Scutari, M.: Package ‘bnlearn’ (2019). https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf
  26. 26.
    Højsgaard, S.: Graphical independence networks with the gRain package for R. J. Stat. Softw. 46(10), 37–44 (2012).  https://doi.org/10.4324/9780429468872-4CrossRefGoogle Scholar
  27. 27.
    Nagarajan, R., Scutari, M., Lèbre, S.: Bayesian Networks in R (2013)  https://doi.org/10.1007/978-1-4614-6446-4CrossRefGoogle Scholar
  28. 28.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)CrossRefGoogle Scholar
  29. 29.
    Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach, 3rd edn (2010).  https://doi.org/10.1017/S0269888900007724CrossRefGoogle Scholar
  30. 30.
    Carvalho, A.: Scoring functions for learning Bayesian networks. INESC-ID Technical report 54/2009, pp. 1–27 (2009). https://pdfs.semanticscholar.org/6efe/f4bacfb14cfe4c1ababae751904431b75cc9.pdf

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Carrera de Ingeniería de Sistemas y Telemática, Facultad de Ciencias de la AdministraciónUniversidad del AzuayCuencaEcuador
  2. 2.Universidad del AzuayCuencaEcuador

Personalised recommendations