A Bayesian Network Approach to Identity Climate Teleconnections Within Homogeneous Precipitation Regions in Ecuador

  • Renato Ávila
  • Daniela BallariEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1099)


Reliable precipitation predictions require an understanding of climate teleconnections over precipitation. In Ecuador, these teleconnections were studied with correlation methods, but multivariate studies with several climatic indexes simultaneously has been less study. The objective of this work is to carry out a multivariate study using Bayesian networks to identify the influence of climate indexes in homogenous precipitation regions in Ecuador. The climate teleconnections, defined as the correlation between precipitation satellite data and climate indexes, as well as the regionalization of seasonality of precipitation were used to learn a Bayesian network in R software. It was characterized the structure and strength of the relationship between the teleconnections and the precipitation. Additionally, three types of belief propagation were used: regions to climate index, climate index to regions, and interactions between indexes. This was useful to determine whether the influence of a climate index is homogeneous throughout the country or varies by region, as well as to identify interactions between different indexes. The results of this study contribute to a better understanding of precipitation in Ecuador, and to promote making evidence-based water resource decisions.


Climate teleconnections Bayesian networks Probability propagation 



This study has been financed by the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) through the project CEPRA XII “Spatial representation of climatic teleconnections in the precipitation of Ecuador”.


  1. 1.
    Ali, S., Jan, A., Manzoor, et al.: Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agric. Water Manag. 210, 88–95 (2018). Scholar
  2. 2.
    Sudha, V., Venugopal, K., Ambujam, N.K.: Reservoir operation management through optimization and deficit irrigation, 93–102 (2008). Scholar
  3. 3.
    Engler, J., Von Wehrden, H., Baumgärtner, S.: Land use policy determinants of farm size and stocking rate in Namibian commercial cattle farming. Land Use Policy 81, 232–246 (2019). Scholar
  4. 4.
    Pratiwi, R., Sukardjo, S.: Effects of rainfall on the population of Shrimps Penaeus Monodon Fabricius in Segara Anakan lagoon, Central Java, Indonesia. 2(3), 156–169 (2018).
  5. 5.
    Abd-elhamid, H.F., Fathy, I., Zelen, M.: Flood prediction and mitigation in coastal tourism areas, a case study: Hurghada, Egypt (2018). Scholar
  6. 6.
    Hamududu, B., Killingtveit, A., Engineering, E.: Assessing Climate Change Impacts on Global Hydropower, 305–322 (2012). Scholar
  7. 7.
    Liu, Y.-C., Di, P., Chen, S.-H., DaMassa, J.: Relationships of rainy season precipitation and temperature to climate indexes in California: long-term variability and extreme events. J. Clim. 31(5), 1921–1942 (2018). Scholar
  8. 8.
    Fierro, A.O.: Relationships between California rainfall variability and large-scale climate drivers. Int. J. Climatol. 34(13), 3626–3640 (2014). Scholar
  9. 9.
    Konapala, G., Valiya, A., Ashok, V.: Teleconnection between low flows and large-scale climate indexes in Texas River basins. Stoch. Environ. Res. Risk Assess. (2017). Scholar
  10. 10.
    De la Torre-Gea, G., Soto-Zarazua, G.M., Guevara-Gonzalez, R.G., Rico-Garcia, E.: Bayesian networks for defining relationships among climate factors. Int. J. Phys. Sci. 6(18), 4412–4418 (2011). Scholar
  11. 11.
    Lee, J.H., Lee, J., Julien, P.Y.: Global climate teleconnection with rainfall erosivity in South Korea. CATENA 167, 28–43 (2018). Scholar
  12. 12.
    Mendoza, D.E., Samaniego, E.P., Mora, D.E., Espinoza, M.J., Campozano, L.V.: Finding teleconnections from decomposed rainfall signals using dynamic harmonic regressions: a Tropical Andean case study. Clim. Dyn. 1–28 (2018). Scholar
  13. 13.
    Correa, M., Bielza, C., Pamies-teixeira, J.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009). Scholar
  14. 14.
    Das, M., Ghosh, S.K.: A probabilistic approach for weather forecast using spatio-temporal inter-relationships among climate variables. In: 9th International Conference on Industrial and Information Systems, ICIIS 2014 (2015).
  15. 15.
    Zeng, Z., Hsieh, W.W., Shabbar, A., Burrows, W.R.: Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrol. Earth Syst. Sci. 15(1), 65–74 (2011). Scholar
  16. 16.
    Duc, H.N., Rivett, K., MacSween, K., Le-Anh, L.: Association of climate drivers with rainfall in New South Wales, Australia, using Bayesian model averaging. Theor. Appl. Climatol. 127(1–2), 169–185 (2017). Scholar
  17. 17.
    Ebert-Uphoff, I., Deng, Y.: A new type of climate network based on probabilistic graphical models: results of boreal winter versus summer. Geophys. Res. Lett. 39(19), L197011. 1–7 (2012)CrossRefGoogle Scholar
  18. 18.
    Vicente-Serrano, S.M., Aguilar, E., Martínez, R., et al.: The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 48(1–2), 405–427 (2017). Scholar
  19. 19.
    Blunden, J., Arndt, D.S., Baringer, M.O., et al.: State of the climate in 2010. Bull. Am. Meteorol. Soc. 92(6), S1-S236 (2011). Scholar
  20. 20.
    Ulloa, J., Ballari, D., Campozano, L., Samaniego, E.: Two-step downscaling of Trmm 3b43 V7 precipitation in contrasting climatic regions with sparse monitoring: the case of Ecuador in Tropical South America. Remote Sens. 9(7), 758 (2017). Scholar
  21. 21.
    Rodríguez, D., Dolado, J.: Redes Bayesianas en la ingeniería del software. CcUahEs 1–21 (2007). Scholar
  22. 22.
    Ballari, D., Giraldo, R., Campozano, L., Samaniego, E.: Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: unveiling the spatio-temporal dependencies of precipitation in Ecuador. Int. J. Climatol. 38(8), 3337–3354 (2018). Scholar
  23. 23.
    Das, K., Vyas, O.P.: A suitability study of discretization methods for associative classifiers. Int. J. Comput. Appl. 5(10), 46–51 (2010). Scholar
  24. 24.
    López, D.A.G.: Algoritmo de Discretización de Series de Tiempo Basado en Entropía y su Aplicación en Datos Colposcópicos (2007).
  25. 25.
    Scutari, M.: Package ‘bnlearn’ (2019).
  26. 26.
    Højsgaard, S.: Graphical independence networks with the gRain package for R. J. Stat. Softw. 46(10), 37–44 (2012). Scholar
  27. 27.
    Nagarajan, R., Scutari, M., Lèbre, S.: Bayesian Networks in R (2013) Scholar
  28. 28.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)CrossRefGoogle Scholar
  29. 29.
    Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach, 3rd edn (2010). Scholar
  30. 30.
    Carvalho, A.: Scoring functions for learning Bayesian networks. INESC-ID Technical report 54/2009, pp. 1–27 (2009).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Carrera de Ingeniería de Sistemas y Telemática, Facultad de Ciencias de la AdministraciónUniversidad del AzuayCuencaEcuador
  2. 2.Universidad del AzuayCuencaEcuador

Personalised recommendations