Advertisement

The Sociobiology of Brain Tumors

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1225)

Abstract

Brain tumors are complex cellular ecosystems, composed of populations of both neoplastic and non-neoplastic cell types. While the contributions of the cancer cells in low-grade and high-grade gliomas have been extensively studied, there is comparatively less known about the contributions of the non-neoplastic cells in these tumors. As such, a large proportion of the non-neoplastic cells in gliomas are resident brain microglia, infiltrating circulating macrophages, and T lymphocytes. These immune system-like stromal cells are recruited into the evolving tumor through the elaboration of chemokines, and are reprogrammed to adopt new cellular identities critical for glioma formation, maintenance, and progression. In this manner, these populations of tumor-associated microglia and macrophages produce growth factors that support gliomagenesis and continued tumor growth. As we begin to characterize these immune cell contributions, future therapies might emerge as adjuvant approaches to glioma treatment.

Keywords

Astrocytoma Cancer Chemokine Glioblastoma Glioma Ecosystem Macrophage Microglia Neurofibromatosis type 1 RAS T lymphocyte Tumorigenesis Tumor microenvironment 

Notes

Funding

The author was funded by a Research Program Award grant from the National Institutes of Health (1-R35-NS07211-01).

References

  1. 1.
    Masui K, Cavenee WK, Mischel PS (2016) Cancer metabolism as a central driving force of glioma pathogenesis. Brain Tumor Pathol 33(3):161–168PubMedPubMedCentralGoogle Scholar
  2. 2.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K et al (2014) Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26(2):288–300PubMedPubMedCentralGoogle Scholar
  4. 4.
    Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F et al (2019) The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res 25(6):1851–1866PubMedGoogle Scholar
  5. 5.
    Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z et al (2011) Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet 20(16):3213–3226PubMedGoogle Scholar
  6. 6.
    Larribere L, Wu H, Novak D, Galach M, Bernhardt M, Orouji E et al (2015) NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 28(4):407–416PubMedGoogle Scholar
  7. 7.
    Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G et al (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bajenaru ML, Hernandez MR, Perry A, Zhu Y, Parada LF, Garbow JR, Gutmann DH (2003) Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosity. Cancer Res 63(24):8573–8577PubMedGoogle Scholar
  9. 9.
    Bajenaru ML, Zhu Y, Hedrick NM, Donahoe J, Parada LF, Gutmann DH (2002) Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol Cell Biol 22(14):5100–5113PubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen R, Keoni C, Waker CA, Lober RM, Chen YH, Gutmann DH (2019) KIAA1549-BRAF expression establishes a permissive tumor microenvironment through NFkappaB-mediated CCL2 production. Neoplasia 21(1):52–60PubMedGoogle Scholar
  11. 11.
    Kaul A, Chen YH, Emnett RJ, Dahiya S, Gutmann DH (2012) Pediatric glioma-associated KIAA1549:BRAF expression regulates neuroglial cell growth in a cell type-specific and mTOR-dependent manner. Genes Dev 26(23):2561–2566PubMedPubMedCentralGoogle Scholar
  12. 12.
    Kaul A, Chen YH, Emnett RJ, Gianino SM, Gutmann DH (2013) Conditional KIAA1549:BRAF mice reveal brain region- and cell type-specific effects. Genesis 51(10):708–716PubMedGoogle Scholar
  13. 13.
    Lee DY, Gianino SM, Gutmann DH (2012) Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell 22(1):131–138PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH (2010) Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 24(20):2317–2329PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ozawa PM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JM, Watanabe MA (2016) Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer 138(1):10–13PubMedGoogle Scholar
  16. 16.
    Wick W, Platten M, Wick A, Hertenstein A, Radbruch A, Bendszus M, Winkler F (2016) Current status and future directions of anti-angiogenic therapy for gliomas. Neuro-Oncology 18(3):315–328PubMedGoogle Scholar
  17. 17.
    Simmons GW, Pong WW, Emnett RJ, White CR, Gianino SM, Rodriguez FJ, Gutmann DH (2011) Neurofibromatosis-1 heterozygosity increases microglia in a spatially and temporally restricted pattern relevant to mouse optic glioma formation and growth. J Neuropathol Exp Neurol 70(1):51–62PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hammond TR, Robinton D, Stevens B (2018) Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol 34:523–544PubMedGoogle Scholar
  19. 19.
    Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242PubMedGoogle Scholar
  20. 20.
    Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27PubMedPubMedCentralGoogle Scholar
  21. 21.
    Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027PubMedGoogle Scholar
  22. 22.
    Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D et al (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res 76(19):5671–5682PubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW et al (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77(9):2266–2278PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pong WW, Higer SB, Gianino SM, Emnett RJ, Gutmann DH (2013) Reduced microglial CX3CR1 expression delays neurofibromatosis-1 glioma formation. Ann Neurol 73(2):303–308PubMedPubMedCentralGoogle Scholar
  25. 25.
    Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272PubMedPubMedCentralGoogle Scholar
  26. 26.
    Guo X, Pan Y, Gutmann DH (2019) Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro-Oncology 21(10):1250–1262Google Scholar
  27. 27.
    Pan Y, Xiong M, Chen R, Ma Y, Corman C, Maricos M et al (2018) Athymic mice reveal a requirement for T-cell-microglia interactions in establishing a microenvironment supportive of Nf1 low-grade glioma growth. Genes Dev 32(7–8):491–496PubMedPubMedCentralGoogle Scholar
  28. 28.
    Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD et al (2015) Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6(17):15077–15094PubMedPubMedCentralGoogle Scholar
  29. 29.
    Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54(3):388–392PubMedGoogle Scholar
  30. 30.
    Amankulor NM, Kim Y, Arora S, Kargl J, Szulzewsky F, Hanke M et al (2017) Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes Dev 31(8):774–786PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42–56.e46PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wood MD, Mukherjee J, Pieper RO (2018) Neurofibromin knockdown in glioma cell lines is associated with changes in cytokine and chemokine secretion in vitro. Sci Rep 8(1):5805PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF et al (2016) Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep 17(9):2445–2459PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hu F, Dzaye O, Hahn A, Yu Y, Scavetta RJ, Dittmar G et al (2015) Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro-Oncology 17(2):200–210PubMedGoogle Scholar
  35. 35.
    Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M, Tsirka SE (2018) Deletion of Neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Cancer Res 78(3):685–694PubMedGoogle Scholar
  36. 36.
    Szulzewsky F, Schwendinger N, Guneykaya D, Cimino PJ, Hambardzumyan D, Synowitz M et al (2018) Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology 20(3):355–366PubMedGoogle Scholar
  37. 37.
    Muller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A et al (2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18(1):234PubMedPubMedCentralGoogle Scholar
  38. 38.
    Miyauchi JT, Chen D, Choi M, Nissen JC, Shroyer KR, Djordevic S et al (2016) Ablation of Neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression. Oncotarget 7(9):9801–9814PubMedPubMedCentralGoogle Scholar
  39. 39.
    Quail DF, Bowman RL, Akkari L, Quick ML, Schuhmacher AJ, Huse JT et al (2016) The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352(6288):aad3018PubMedPubMedCentralGoogle Scholar
  40. 40.
    Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH (2008) Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res 68(24):10358–10366PubMedGoogle Scholar
  41. 41.
    Daginakatte GC, Gutmann DH (2007) Neurofibromatosis-1 (Nf1) heterozygous brain microglia elaborate paracrine factors that promote Nf1-deficient astrocyte and glioma growth. Hum Mol Genet 16(9):1098–1112PubMedGoogle Scholar
  42. 42.
    Solga AC, Pong WW, Kim KY, Cimino PJ, Toonen JA, Walker J et al (2015) RNA sequencing of tumor-associated microglia reveals Ccl5 as a stromal chemokine critical for neurofibromatosis-1 glioma growth. Neoplasia 17(10):776–788PubMedPubMedCentralGoogle Scholar
  43. 43.
    Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36(10):569–577PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ellwardt E, Walsh JT, Kipnis J, Zipp F (2016) Understanding the role of T cells in CNS homeostasis. Trends Immunol 37(2):154–165PubMedGoogle Scholar
  45. 45.
    Filiano AJ, Gadani SP, Kipnis J (2017) How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 18(6):375–384PubMedPubMedCentralGoogle Scholar
  46. 46.
    Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE et al (2018) CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci 21(10):1380–1391PubMedPubMedCentralGoogle Scholar
  47. 47.
    D’Angelo F, Ceccarelli M, Tala, Garofano L, Zhang J, Frattini V et al (2019) The molecular landscape of glioma in patients with Neurofibromatosis 1. Nat Med 25(1):176–187PubMedGoogle Scholar
  48. 48.
    Pan Y, Smithson LJ, Ma Y, Hambardzumyan D, Gutmann DH (2017) Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival. Oncotarget 8(20):32977–32989PubMedPubMedCentralGoogle Scholar
  49. 49.
    Han W, Umekawa T, Zhou K, Zhang XM, Ohshima M, Dominguez CA et al (2016) Cranial irradiation induces transient microglia accumulation, followed by long-lasting inflammation and loss of microglia. Oncotarget 7(50):82305–82323PubMedPubMedCentralGoogle Scholar
  50. 50.
    Kalm M, Lannering B, Bjork-Eriksson T, Blomgren K (2009) Irradiation-induced loss of microglia in the young brain. J Neuroimmunol 206(1–2):70–75PubMedGoogle Scholar
  51. 51.
    Li MD, Burns TC, Kumar S, Morgan AA, Sloan SA, Palmer TD (2015) Aging-like changes in the transcriptome of irradiated microglia. Glia 63(5):754–767PubMedPubMedCentralGoogle Scholar
  52. 52.
    Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN et al (2019) Methotrexate chemotherapy induces persistent tri-glial dysregulation that underlies chemotherapy-related cognitive impairment. Cell 176(1–2):43–55.e13PubMedGoogle Scholar
  53. 53.
    Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of NeurologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations