Advertisement

Symplectic and Time Reversible Integrator

  • Hiqmet Kamberaj
Chapter
  • 65 Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this chapter, we will discuss numerical integrator algorithms used for solving differential equations used in molecular dynamics simulations. In particular, we will propose different numerical integrator algorithms, which satisfy time reversibility or symplectic properties.

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)zbMATHGoogle Scholar
  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1988)Google Scholar
  3. Barth, E., Schlick, T.: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN. J. Chem. Phys. 109(5), 1617–1632 (1998a)Google Scholar
  4. Barth, E., Schlick, T.: Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics. J. Chem. Phys. 109(5), 1633–1642 (1998b)Google Scholar
  5. Bishop, T.C., Skeel, R.D., Schulten, K.: Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. J. Comput. Chem. 18(14), 1785–1791 (1997)CrossRefGoogle Scholar
  6. Creutz, M., Goksch, A.: Higher-order hybrid Monte-Carlo algorithms. Phys. Rev. Lett. 63, 9–12 (1989)ADSMathSciNetCrossRefGoogle Scholar
  7. Goldstein, H.: Classical Mechanics, 2nd edn. Addison-Wesley, San Francisco (2002)zbMATHGoogle Scholar
  8. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985b)ADSCrossRefGoogle Scholar
  9. Izaguirre, J.A., Catarello, D.P., Wozniak, J.M., Skeel, R.D.: Langevin stabilization of molecular dynamics. J. Chem. Phys. 114(5), 2090–2098 (2001)ADSCrossRefGoogle Scholar
  10. Kamberaj, H., Low, R.J., Neal, M.P.: Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. J. Chem. Phys. 122(22), 224114 (2005)ADSCrossRefGoogle Scholar
  11. Leimkuhler, B.J., Reich, S.: Geometric Numerical Methods for Hamiltonian Mechanics. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  12. Ma, Q., Izaguirre, J.A.: Targeted mollified impulse: a multi scale stochastic integrator for long molecular dynamics simulations. Multiscale Model. Simul. 2(1), 1–21 (2003)MathSciNetCrossRefGoogle Scholar
  13. Ma, Q., Izaguirre, J.A., Skeel, R.D.: Verlet-I/r-RESPA/Impulse is limited by nonlinear instabilities. SIAM J. Sci. Comput. 24, 1951–1973 (2003)MathSciNetCrossRefGoogle Scholar
  14. Martyna, G.J., Tuckerman, M., Tobias, D.J., Klein, M.L.: Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87(5), 1117–1157 (1996)ADSCrossRefGoogle Scholar
  15. Minary, P., Tuckerman, M.E., Martyna, G.J.: Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. Phys. Rev. Lett. 93, (150201-4) (2004)Google Scholar
  16. Nosé, S.: A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 (1984a)ADSCrossRefGoogle Scholar
  17. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984b)ADSCrossRefGoogle Scholar
  18. Raedt, H.D., Raedt, B.D.: Applications of the generalized Trotter formula. Phys. Rev. A 28(6), 3575 (1983)ADSMathSciNetCrossRefGoogle Scholar
  19. Schlick, T., Mandziuk, M., Skeel, R.D., Srinivas, K.: Nonlinear resonance artefacts in molecular dynamics simulations. J. Comput. Phys. 140(1), 1–29 (1998)ADSMathSciNetCrossRefGoogle Scholar
  20. Skeel, R.D., Zhang, G., Schlick, T.: A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput. 18(1), 203–222 (1997)MathSciNetCrossRefGoogle Scholar
  21. Strang, G.: On the construction and comparison of different schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)ADSMathSciNetCrossRefGoogle Scholar
  22. Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400 (1991)ADSMathSciNetCrossRefGoogle Scholar
  23. Takahashi, M., Imada, M.: Monte Carlo calculation of quantum systems. II. Higher order correction. J. Phys. Soc. Jpn. 53, 3765–3769 (1984)ADSGoogle Scholar
  24. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)MathSciNetCrossRefGoogle Scholar
  25. Tuckerman, M., Parrinello, M.: Integrating the Car-Parrinello equations. I. Basic integration techniques. J. Chem. Phys. 101(2), 1302 (1994)Google Scholar
  26. Tuckerman, M.E., Berne, B.J.: Molecular dynamics algorithm for multiple time scales: systems with long range forces. J. Chem. Phys. 94, 6811 (1991a)ADSCrossRefGoogle Scholar
  27. Tuckerman, M.E., Berne, B.J.: Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces. J. Chem. Phys. 95, 8362 (1991b)ADSCrossRefGoogle Scholar
  28. Tuckerman, M.E., Martyna, G.J.: Understanding modern molecular dynamics: Techniques and Applications. J. Phys. Chem. B 104, 159–178 (2000)CrossRefGoogle Scholar
  29. Tuckerman, M.E., Berne, B.J., Rossi, A.: Molecular dynamics algorithm for multiple time scales: Systems with disparate masses. J. Chem. Phys. 94, 1465 (1991)ADSCrossRefGoogle Scholar
  30. Tuckerman, M.E., Martyna, G.J., Berne, B.J.: Molecular dynamics algorithm for condensed systems with multiple time scales. J. Chem. Phys. 93, 1287 (1990)ADSCrossRefGoogle Scholar
  31. Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible multiple time step scale molecular dynamics. J. Chem. Phys. 97(3), 1990–2001 (1992)ADSCrossRefGoogle Scholar
  32. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)zbMATHGoogle Scholar
  33. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hiqmet Kamberaj
    • 1
    • 2
  1. 1.Computer EngineeringInternational Balkan UniversitySkopjeNorth Macedonia
  2. 2.Advanced Computing Research CenterUniversity of New York TiranaTiranaAlbania

Personalised recommendations