Advertisement

Practical Aspects of Molecular Dynamics Simulations

  • Hiqmet Kamberaj
Chapter
  • 53 Downloads
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

In this chapter, we will introduce some practical aspects of molecular dynamics simulations, such as designing the constraints (e.g., SHAKE), periodic boundary conditions, spherical cutoffs, treatment of the long-range interactions (in particular, electrostatic interactions), and identifying the equilibrium states of the simulations.

References

  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)zbMATHGoogle Scholar
  2. Brooks, B.R., Brooks, C.L., MacKerell, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaefer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)Google Scholar
  3. Cheatham III, T.E., Miller, J.L., Fox, T., Darden, T.A., Kollman, P.A.: Molecular dynamics simulations on solvated biomolecular systems: the particle mesh ewald method leads to stable trajectories of DNA, RNA and proteins. J. Am. Chem. Soc. 117, 4193–4194 (1995)CrossRefGoogle Scholar
  4. Darden, T., York, D., Perdersen, L.: Particle-mesh Ewald: an \(n\log n\) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)Google Scholar
  5. Darden, T.A., Perera, L., Li, L., Pedersen, L.: New tricks for modellers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Struct. Folding Des. 7, R55–R60 (1999)CrossRefGoogle Scholar
  6. Deserno, M., Holm, C.: How to mesh up Ewald sums. I A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys. 109, 7678–7693 (1998a)Google Scholar
  7. Deserno, M., Holm, C.: How to mesh up Ewald sums. II An accurate error estimate for the particle-particle-particle-mesh algorithm. J. Chem. Phys. 109, 7694–7701 (1998b)Google Scholar
  8. Ding, H., Karasawa, N., Goddard III, W.A.: The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cell. Chem. Phys. Lett. 196, 6–10 (1992)ADSCrossRefGoogle Scholar
  9. Ewald, P.: Die Berechnung optischer und elektrostatischer Gitter potenciale. Annalen der Physik 64, 253–287 (1921)ADSCrossRefGoogle Scholar
  10. Frenkel, D., Smit, B.: Understanding Molecular Simulation from Algorithms to Applications. Academic, San Diego (2001). ISBN 9780122673511Google Scholar
  11. Fukuda, I., Nakamura, H.: Non-Ewald methods: theory and applications to molecular systems. Biophys. Rev. 4, 161–170 (2012)CrossRefGoogle Scholar
  12. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)ADSMathSciNetCrossRefGoogle Scholar
  13. Hardy, D.J., Stone, J.E., Vandivort, K.L., Gohara, D., Rodrigues, C., Schulten, K.: Fast molecular electrostatics algorithms on GPUs. In: Wen mei Hwu, W. (ed.) GPU Computing Gems, pp. 43–58. Morgan Kaufmann Publishers, San Francisco (2011)Google Scholar
  14. Hockney, R., Eastwood, J.: Computer simulation using particles. McGraw-Hill, New York (1981)zbMATHGoogle Scholar
  15. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Adam Hilger, Bristol (1988)CrossRefGoogle Scholar
  16. Humphrey, W., Dalke, A., Schulten, K.: VMD − Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  17. Leach, A.R.: Molecular Modelling. Principles and Applications, 2nd edn. Pearson Education Limited, Edingburgh Gate/Prentice Hall (2001)Google Scholar
  18. Luty, B.A., David, M.E., Tironi, I.G., van Gunsteren., W.F.: A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 14, 11–20 (1994)Google Scholar
  19. Luty, B.A., Tironi, I.G., van Gunsteren, W.F.: Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys. 103, 3014–3021 (1995)ADSCrossRefGoogle Scholar
  20. Phillips, J.C., Stone, J.E., Vandivort, K.L., Armstrong, T.G., Wozniak, J.M., Wilde, M., Schulten, K.: Petascale Tcl with NAMD, VMD, and Swift/T. In: SC’14 Workshop on High Performance Technical Computing in Dynamic Languages. IEEE Press (2014)Google Scholar
  21. Rajagopal, G., Needs, R.: An optimized Ewald method for long-ranged potentials. J. Comput. Phys. 115, 399–405 (1994)ADSCrossRefGoogle Scholar
  22. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)ADSCrossRefGoogle Scholar
  23. Schlick, T.: Molecular Modeling and Simulation. An Interdisciplinary Guide, 2nd edn. Springer, New York (2010)Google Scholar
  24. Shimada, J., Kaneko, H., Takada, T.: Efficient calculations of coulombic interactions in biomolecular simulations with periodic boundary conditions. J. Comput. Chem. 14, 867–878 (1993)CrossRefGoogle Scholar
  25. Shimada, J., Kaneko, H., Takada, T.: Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations. J. Comput. Chem. 15, 28–43 (1994)CrossRefGoogle Scholar
  26. Stone, J.E., Hardy, D.J., Isralewitz, B., Schulten, K.: GPU algorithms for molecular modelling. In: Bader, D.A., Kurzak, J. (eds.) Scientific Computing with Multicore and Accelerators, pp. 351–371. Chapman & Hall, Boca Raton (2011)Google Scholar
  27. Toukmaji, A.Y., Board, J.A. Jr., Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996)ADSCrossRefGoogle Scholar
  28. Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible multiple time step scale molecular dynamics. J. Chem. Phys. 97(3), 1990–2001 (1992)ADSCrossRefGoogle Scholar
  29. York, D.M., Wlodawer, A., Pedersen, L., Darden, T.A.: Atomic-level accuracy in simulations of large protein crystals. Proc. Natl. Acad. Sci. USA 91, 8715–8718 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hiqmet Kamberaj
    • 1
    • 2
  1. 1.Computer EngineeringInternational Balkan UniversitySkopjeNorth Macedonia
  2. 2.Advanced Computing Research CenterUniversity of New York TiranaTiranaAlbania

Personalised recommendations