Advertisement

A Fast and Stable Omnidirectional Walking Engine for the Nao Humanoid Robot

  • Mohammadreza KasaeiEmail author
  • Nuno Lau
  • Artur Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

This paper proposes a framework designed to generate a closed-loop walking engine for a humanoid robot. In particular, the core of this framework is an abstract dynamics model which is composed of two masses that represent the lower and the upper body of a humanoid robot. Moreover, according to the proposed dynamics model, the low-level controller is formulated as a Linear-Quadratic-Gaussian (LQG) controller that is able to robustly track the desired trajectories. Besides, this framework is fully parametric which allows using an optimization algorithm to find the optimum parameters. To examine the performance of the proposed framework, a set of simulation using a simulated Nao robot in the RoboCup 3D simulation environment has been carried out. Simulation results show that the proposed framework is capable of providing fast and reliable omnidirectional walking. After optimizing the parameters using genetic algorithm (GA), the maximum forward walking velocity that we have achieved was 80.5 cm/s.

Keywords

Humanoid robots Walking engine Linear-Quadratic-Gaussian (LQG) Genetic algorithm Linear Inverted Pendulum Model (LIPM) 

Notes

Acknowledgement

This research is supported by Portuguese National Funds through Foundation for Science and Technology (FCT) through FCT scholarship SFRH/BD/118438/2016.

References

  1. 1.
    Asta, S., Sariel-Talay, S.: Nature-inspired optimization for biped robot locomotion and gait planning. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 434–443. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20520-0_44CrossRefGoogle Scholar
  2. 2.
    Gay, S., Santos-Victor, J., Ijspeert, A.: Learning robot gait stability using neural networks as sensory feedback function for central pattern generators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 194–201. IEEE (2013)Google Scholar
  3. 3.
    Goswami, A.: Postural stability of biped robots and the foot-rotation indicator (FRI) point. Int. J. Rob. Res. 18(6), 523–533 (1999)CrossRefGoogle Scholar
  4. 4.
    Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: An analytical method for real-time gait planning for humanoid robots. Int. J. Humanoid Rob. 3(01), 1–19 (2006)CrossRefGoogle Scholar
  5. 5.
    Kajita, S., et al.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2003, ICRA 2003, vol. 2, pp. 1620–1626. IEEE (2003)Google Scholar
  6. 6.
    Kasaei, M., Lau, N., Pereira, A.: An optimal closed-loop framework to develop stable walking for humanoid robot. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 30–35. IEEE (2018)Google Scholar
  7. 7.
    Kasaei, S.M., Simões, D., Lau, N., Pereira, A.: A hybrid ZMP-CPG based walk engine for biped robots. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 694, pp. 743–755. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-70836-2_61CrossRefGoogle Scholar
  8. 8.
    Komura, T., Leung, H., Kudoh, S., Kuffner, J.: A feedback controller for biped humanoids that can counteract large perturbations during gait. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, ICRA 2005, pp. 1989–1995. IEEE (2005)Google Scholar
  9. 9.
    Massah, A., Zamani, A., Salehinia, Y., Sh, M.A., Teshnehlab, M.: A hybrid controller based on CPG and ZMP for biped locomotion. J. Mech. Sci. Technol. 27(11), 3473–3486 (2013).  https://doi.org/10.1007/s12206-013-0871-7CrossRefGoogle Scholar
  10. 10.
    Morisawa, M., et al.: Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3989–3994. IEEE (2007)Google Scholar
  11. 11.
    Nakaura, S., Sampei, M., et al.: Balance control analysis of humanoid robot based on ZMP feedback control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2437–2442. IEEE (2002)Google Scholar
  12. 12.
    Or, J.: A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot. Neural Netw. 23(3), 452–460 (2010)CrossRefGoogle Scholar
  13. 13.
    Picado, H., Gestal, M., Lau, N., Reis, L.P., Tomé, A.M.: Automatic generation of biped walk behavior using genetic algorithms. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 805–812. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02478-8_101CrossRefGoogle Scholar
  14. 14.
    Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: A step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207. IEEE (2006)Google Scholar
  15. 15.
    Shafii, N., Reis, L.P., Lau, N.: Biped walking using coronal and sagittal movements based on truncated fourier series. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 324–335. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20217-9_28CrossRefGoogle Scholar
  16. 16.
    Sugihara, T., Nakamura, Y.: A fast online gait planning with boundary condition relaxation for humanoid robots. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 305–310. IEEE (2005)Google Scholar
  17. 17.
    Vukobratovic, M., Frank, A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomed. Eng. 1, 25–36 (1970)CrossRefGoogle Scholar
  18. 18.
    Winter, D.A., Ruder, G.K., MacKinnon, C.D.: Control of balance of upper body during gait. In: Winters, J.M., Woo, S.L.Y. (eds.) Multiple muscle systems, pp. 534–541. Springer, New York (1990).  https://doi.org/10.1007/978-1-4613-9030-5_33CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IEETA / DETIUniversity of AveiroAveiroPortugal

Personalised recommendations