Advertisement

Similarity Analysis of Action Trajectories Based on Kick Distributions

  • Takuya FukushimaEmail author
  • Tomoharu Nakashima
  • Hidehisa Akiyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

This paper discusses the validity of similarity measures for action trajectories based on kick distributions. We focus on action trajectories for analyzing team strategies. Kick distribution is then obtained from the action trajectories, which allows us to quantitatively calculate the dissimilarity (or distance) between two team strategies. In this paper, three distance metrics are investigated as the similarity measure: Earth mover’s distance, \(L^2\) distance, and Jensen-Shannon divergence. A series of numerical experiments are conducted to compare the evaluation of the similarity obtained by the distances with human subjective evaluations. The effectiveness of the distance metrics is also discussed in terms of the computational cost for calculating the distance.

Keywords

Strategy analysis Data mining Similarity measure RoboCup Soccer Simulation 2D 

References

  1. 1.
    Lin, Q., Zhang, D., Connelly, K., Ni, H., Zhiwen, Y., Zhou, X.: Disorientation detection by mining GPS trajectories for cognitively-impaired elders. Pervasive Mob. Comput. 19, 71–85 (2015)CrossRefGoogle Scholar
  2. 2.
    Dodge, S., Weibel, R., Laube, P.: Trajectory similarity analysis in movement parameter space. In: Proceedings of the 19th GIS Research UK Annual Conference 2011, pp. 270–279 (2011)Google Scholar
  3. 3.
    Zhu, G., et al.: Trajectory based event tactics analysis in broadcast sports video. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 58–67 (2007)Google Scholar
  4. 4.
    Mutschler, C., Kókai, G., Edelhäußer, T.: Online data stream mining on interactive trajectories in soccer games. In: Proceedings of the 2nd International Conference on Positioning and Context-Awareness, pp. 15–22 (2011)Google Scholar
  5. 5.
    Stein, M., Janetzko, H., Schreck, T., Keim, D.A.: Tackling similarity search for soccer match analysis: multimodal distance measure and interactive query definition. In: Proceedings of the 4th Symposium on Visualization in Data Science, 10 pages (2018)Google Scholar
  6. 6.
    Mehrasa, N., Zhong, Y., Tung, F., Bornn, L., Mori, G.: Deep learning of player trajectory representation for team activity analysis. In: Proceedings of the 11th MIT Sloan Sports Analytics Conference, 8 pages (2018)Google Scholar
  7. 7.
    Michael, O., Obst, O., Schmidsberger, F., Stolzenburg, F.: Analysing soccer games with clustering and conceptors. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 120–131. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00308-1_10CrossRefGoogle Scholar
  8. 8.
    Nakashima, T., Mifune, S., Henrio, J., Obst, O., Wang, P., Prokopenko, M.: Kick extraction for reducing uncertainty in RoboCup logs. In: Yamamoto, S. (ed.) HCI 2015. LNCS, vol. 9173, pp. 622–633. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20618-9_61CrossRefGoogle Scholar
  9. 9.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40(2), 99–121 (2000)CrossRefGoogle Scholar
  10. 10.
    Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_46CrossRefGoogle Scholar
  11. 11.
    Zare, N., et al.: Cyrus 2D simulation team description paper 2018. In: RoboCup2018 Montreal, 6 pages (2018)Google Scholar
  12. 12.
    Gabel, T., Klöppner, P., Godehardt, E.: FRA-UNIted – team description 2018. In: RoboCup2018 Montreal, 6 pages (2018)Google Scholar
  13. 13.
    Prokopenko, M., Wang, P., Obst, O., Jauregui, V.: Gliders 2016: integrating multi-agent approaches to tactical diversity. In: RoboCup2016 Leipzig, 6 pages (2016)Google Scholar
  14. 14.
    Akiyama, H., Nakashima, T., Suzuki, Y., Ohori, A., Fukushima, T.: HELIOS2018: team description paper. In: RoboCup2018 Montreal, 6 pages (2018)Google Scholar
  15. 15.
    Yang, Z., et al.: MT2018: team description paper. In: RoboCup2018 Montreal, 6 pages (2018)Google Scholar
  16. 16.
    Marian, S., Luca, D., Sarac, B., Cotarlea, O.: OXSY 2018 team description. In: RoboCup2018 Montreal, 6 pages (2018)Google Scholar
  17. 17.
    Li, X., Chen, R., Chen, X.: WrightEagle 2D soccer simulation team description 2015. In: RoboCup2015 Hefei, 5 pages (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Osaka Prefecture UniversityOsakaJapan
  2. 2.Fukuoka UniversityFukuokaJapan

Personalised recommendations