Advertisement

Game-Watching Should be More Entertaining: Real-Time Application of Field-Situation Prediction to a Soccer Monitor

  • Yudai SuzukiEmail author
  • Takuya Fukushima
  • Léa Thibout
  • Tomoharu Nakashima
  • Hidehisa Akiyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

This paper describes an extension to a soccer monitor used in the RoboCup Soccer Simulation 2D League. The aim of the extension is to make the experience of watching games more entertaining. The audio effects and the visualization are focused on this purpose. The extended soccer monitor simulates the supporters’ excitement in watching a game by estimating the time cycle until the next goal, which is called SituationScore. This paper describes how SituationScore is obtained using a machine learning model and also describes the resulting soccer monitor.

References

  1. 1.
    RoboCup Soccer Simulation Monitor. https://github.com/rcsoccersim/rcssmonitor. Accessed 8 June 2019
  2. 2.
    Akiyama, H.: RoboCup tools (2009). https://osdn.net/projects/rctools/releases/68532. Accessed 8 June 2019
  3. 3.
    Sedaghat, M.N., et al.: Caspian 2003 Presentation Description (2003). https://archive.robocup.info/Soccer/Simulation/2D/TPs/RoboCup/2003/Caspian_SS2D_RC2003_TP.pdf. Accessed 8 June 2019
  4. 4.
    Pomas, T., Nakashima, T.: Evaluation of situations in RoboCup 2D simulations using soccer field images. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 275–286. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27544-0_23CrossRefGoogle Scholar
  5. 5.
    Akiyama, H., Nakashima, T.: HELIOS Base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_46CrossRefGoogle Scholar
  6. 6.
    Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). tensorflow.org
  7. 7.
    Karen, S., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2015)
  8. 8.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)Google Scholar
  9. 9.
    Porter, A., et al.: Freesound (2005). https://freesound.org/. Accessed 8 June 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Osaka Prefecture UniversityOsakaJapan
  2. 2.Fukuoka UniversityFukuokaJapan

Personalised recommendations