Advertisement

Towards S-NAMO: Socially-Aware Navigation Among Movable Obstacles

  • Benoit RenaultEmail author
  • Jacques Saraydaryan
  • Olivier Simonin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

In this paper, we present an in-depth analysis of Navigation Among Movable Obstacles (NAMO) literature, notably highlighting that social acceptability remains an unadressed problem in this robotics navigation domain. The objectives of a Socially-Aware NAMO are defined and a first set of algorithmic propositions is built upon existing work. We developed a simulator allowing to test our propositions of social movability evaluation for obstacle selection, and social placement of objects with a semantic map layer. Preliminary pushing tests are done with a Pepper robot, the standard platform for the Robocup@home SSPL (SSPL: Social Standard Platform League), in the context of our participation (LyonTech Team).

Keywords

Navigation Among Movable Obstacles (NAMO) Socially-Aware Navigation (SAN) Path planning Simulation 

References

  1. 1.
    Wilfong, G.: Motion planning in the presence of movable obstacles. Ann. Math. Artif. Intell. 3(1), 131–150 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chen, P.C., et al.: Practical path planning among movable obstacles. In: 1991 IEEE International Conference on Robotics and Automation Proceedings, pp. 444–449, vol. 1, April 1991Google Scholar
  3. 3.
    Demaine, E.D., et al.: PushPush and Push-1 are NP-hard in 2D. arXiv: cs/0007021, July 2000
  4. 4.
    Ota, J., Rearrangement of multiple movable objects - integration of global and local planning methodology. In: 2004 IEEE International Conference on Robotics and Automation, 2004, Proceedings, ICRA 2004, vol. 2, pp. 1962–1967, April 2004Google Scholar
  5. 5.
    Okada, K., et al.: Environment manipulation planner for humanoid robots using task graph that generates action sequence. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 2, pp. 1174–1179, September 2004Google Scholar
  6. 6.
    Stilman, M., et al.: Navigation among movable obstacles: real-time reasoning in complex environments. Int. J. Humanoid Robot. 02(04), 479–503 (2005)CrossRefGoogle Scholar
  7. 7.
    Kim, D., et al.: Traversability classification using unsupervised on-line visual learning for outdoor robot navigation. In: 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 518–525, February 2006Google Scholar
  8. 8.
    Stilman, M., et al.: Planning and executing navigation among movable obstacles. Adv. Robot. 21(14), 1617–1634 (2007)CrossRefGoogle Scholar
  9. 9.
    Stilman, M.: Navigation among movable obstacles. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, October 2007Google Scholar
  10. 10.
    Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: An effective framework for path planning amidst movable obstacles. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds.) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol. 47, pp. 87–102. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-68405-3_6CrossRefGoogle Scholar
  11. 11.
    Stilman, M., et al.: Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 27(11–12), 1295–1307 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    van den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable obstacles: a probabilistically complete approach. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds.) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol. 57, pp. 599–614. Springer, Berlin, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00312-7_37CrossRefGoogle Scholar
  13. 13.
    Kakiuchi, Y., et al.: Working with movable obstacles using on-line environment perception reconstruction using active sensing and color range sensor. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1696–1701, October 2010Google Scholar
  14. 14.
    Wu, H., et al.: Navigation Among Movable Obstacles in unknown environments. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1433–1438, October 2010Google Scholar
  15. 15.
    Levihn, M., et al.: Efficient opening detection. Technical Report, Georgia Institute of Technology (2011)Google Scholar
  16. 16.
    Levihn, M.: Navigation Among Movable Obstacles in unknown environments. Master’s thesis, Georgia Institute of Technology, Atlanta, Georgia, May 2011Google Scholar
  17. 17.
    Levihn, M., Scholz, J., Stilman, M.: Hierarchical decision theoretic planning for navigation among movable obstacles. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X. STAR, vol. 86, pp. 19–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36279-8_2CrossRefGoogle Scholar
  18. 18.
    Levihn, M., et al.: Planning with movable obstacles in continuous environments with uncertain dynamics. In 2013 IEEE International Conference on Robotics and Automation, pp. 3832–3838, May 2013Google Scholar
  19. 19.
    Levihn, M., et al.: Foresight and reconsideration in hierarchical planning and execution. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 224–231, November 2013Google Scholar
  20. 20.
    Kruse, T., et al.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)CrossRefGoogle Scholar
  21. 21.
    Clingerman, C., et al.: Estimating manipulability of unknown obstacles for navigation in indoor environments. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2771–2778, May 2014Google Scholar
  22. 22.
    Mueggler, E., et al.: Aerial-guided navigation of a ground robot among movable obstacles. In: 2014 IEEE International Symposium on Safety, Security, and Rescue Robotics (2014), pp. 1–8, October 2014Google Scholar
  23. 23.
    Levihn, M., et al.: Locally optimal navigation among movable obstacles in unknown environments. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 86–91, November 2014Google Scholar
  24. 24.
    Rios-Martinez, J., et al.: From proxemics theory to socially-aware navigation: a survey. Int. J. Soc. Robot. 7(2), 137–153 (2015)CrossRefGoogle Scholar
  25. 25.
    Clingerman, C., et al.: Dynamic and probabilistic estimation of manipulable obstacles for indoor navigation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6121–6128, September 2015Google Scholar
  26. 26.
    Castaman, N., et al.: A sampling-based tree planner for navigation among movable obstacles. In: Proceedings of ISR 2016: 47st International Symposium on Robotics, pp. 1–8, June 2016Google Scholar
  27. 27.
    Castaman, N.: A sampling-based tree planner for robot navigation among movable obstacles. Master’s thesis, University of Padova, Padova, Italy, July 2016Google Scholar
  28. 28.
    Moghaddam, S.K., et al.: Planning robot navigation among movable obstacles (NAMO) through a recursive approach. J. Intell. Robot. Syst. 83(3), 603–634 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Scholz, J., et al.: Navigation among movable obstacles with learned dynamic constraints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3706–3713, October 2016Google Scholar
  30. 30.
    Charalampous, K., et al.: Recent trends in social aware robot navigation: a survey. Robot. Auton. Syst. 93, 85–104 (2017)CrossRefGoogle Scholar
  31. 31.
    Sun, H., et al.: Semantic mapping and semantics-boosted navigation with path creation on a mobile robot. In: 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pp. 207–212, November 2017Google Scholar
  32. 32.
    Jumel, F., et al.: Context aware robot architecture, application to the RoboCup@Home challenge. In: RoboCup symposium, pp. 1–12, Montreal, Canada, June 2018Google Scholar
  33. 33.
    Meng, Z., et al.: Active path clearing navigation through environment reconfiguration in presence of movable obstacles. In: 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 156–163, July 2018Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benoit Renault
    • 1
    • 2
    Email author
  • Jacques Saraydaryan
    • 1
    • 3
  • Olivier Simonin
    • 1
    • 2
  1. 1.CITI Lab., Inria ChromaUniversité de LyonVilleurbanneFrance
  2. 2.INSA LyonUniversité de LyonVilleurbanneFrance
  3. 3.CPE LyonUniversité de LyonVilleurbanneFrance

Personalised recommendations