Advertisement

Adaptive Walk-Kick on a Bipedal Robot

  • Pedro PeñaEmail author
  • Ubbo VisserEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

Using the NAO robot as a testbed, we propose a walk-kick framework that can generate a kick trajectory with an arbitrary direction without prior input or knowledge of the parameters of the kick in the midst of walking while still guaranteeing reaching a reference trajectory. The walk-kick uses kick interpolators from a dynamic kick engine and the walk trajectories generated from adaptive walking engine to generate motions in any direction that allow a robot to reach its destination while also allowing it to move the ball in further distances without transitioning in different states to accommodate both tasks. The system has been extensively tested on the physical robot, taking into account ten different target angles. The stability and reliability of each kick has been evaluated 30 times for each kick motion trajectory while performing demanding motions. Results show that our proposed walk-kick framework and its integration is reliable in terms of the kick directions and stability of the robot overall (<1% falling rate), and our experiments verify that the walk-kick trajectories were consistent with an average absolute bearing of <6\(^\circ \) within any given direction.

Keywords

Dynamic kick Dynamic walking Humanoid robots 

References

  1. 1.
    Abdolmaleki, A., Simões, D., Lau, N., Reis, L.P., Neumann, G.: Learning a Humanoid kick with controlled distance. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 45–57. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_4CrossRefGoogle Scholar
  2. 2.
    Becht, I., de Jonge, M., Pronk, R.: A dynamic kick for the NAO robot. University of Amsterdam, Intelligent Robotics Lab, Tech. rep. (2013)Google Scholar
  3. 3.
    Böckmann, A., Laue, T.: Kick motions for the NAO robot using dynamic movement primitives. arXiv preprint. arXiv:1606.00600 (2016)
  4. 4.
    Choi, J.Y., So, B.R., Yi, B.J., Kim, W., Suh, I.H.: Impact based trajectory planning of a soccer ball in a kicking robot. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2834–2840 (April 2005).  https://doi.org/10.1109/ROBOT.2005.1570543
  5. 5.
    Ferreira, R., Reis, L.P., Moreira, A.P., Lau, N.: Development of an omnidirectional kick for a NAO humanoid robot. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS (LNAI), vol. 7637, pp. 571–580. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34654-5_58CrossRefGoogle Scholar
  6. 6.
    Kajita, S., et al.: Resolved momentum control: humanoid motion planning based on the linear and angular momentum. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), vol. 2, pp. 1644–1650 (October 2003).  https://doi.org/10.1109/IROS.2003.1248880
  7. 7.
    Kim, D., Jorgensen, S.J., Stone, P., Sentis, L.: Dynamic behaviors on the NAO robot with closed-loop whole body operational space control. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 1121–1128 (November 2016).  https://doi.org/10.1109/HUMANOIDS.2016.7803411
  8. 8.
    Lengagneua, S., Fraisse, P., Ramdani, N.: Planning and fast re-planning of safe motions for humanoid robots: application to a kicking motion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 441–446 (October 2009).  https://doi.org/10.1109/IROS.2009.5354002
  9. 9.
    Miossec, S., Yokoi, K., Kheddar, A.: Development of a software for motion optimization of robots - Application to the kick motion of the HRP-2 robot. In: 2006 IEEE International Conference on Robotics and Biomimetics, pp. 299–304 (December 2006).  https://doi.org/10.1109/ROBIO.2006.340170
  10. 10.
    Müller, J., Laue, T., Röfer, T.: Kicking a ball – modeling complex dynamic motions for humanoid robots. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010. LNCS (LNAI), vol. 6556, pp. 109–120. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20217-9_10CrossRefGoogle Scholar
  11. 11.
    Peña, P.: An omni-directional kick engine for NAO humanoid robots. Master’s thesis, University of Miami, 1365 Memorial Drive Coral Gables, FL. 33146 (January 2019)Google Scholar
  12. 12.
    Pena, P., Masterjohn, J., Visser, U.: An omni-directional kick engine for humanoid robots with parameter optimization. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 385–397. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00308-1_32CrossRefGoogle Scholar
  13. 13.
    Peña, P., Masterjohn, J., Visser, U.: optimizing kick trajectory: a comparative study. In: Müller, C., Lisetti, C., Theobald, M. (eds.) 3rd Global Conference on Artificial Intelligence, GCAI 2017. EPiC Series in Computing, vol. 50, pp. 239–245. EasyChair (2017).  https://doi.org/10.29007/3f7v, https://easychair.org/publications/paper/Xw6m
  14. 14.
    Seekircher, A., Visser, U.: An adaptive LIPM-based dynamic walk using model parameter optimization on humanoid robots. KI 30(3), 233–244 (2016)Google Scholar
  15. 15.
    Sung, C.H., Kagawa, T., Uno, Y.: Planning of kicking motion with via-point representation for humanoid robots. In: 2011 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 337–342 (November 2011).  https://doi.org/10.1109/URAI.2011.6145987
  16. 16.
    Wang, J., Liang, Z., Zhou, Z., Zhang, Y.: Kicking motion design of humanoid robots using gradual accumulation learning method based on Q-learning. In: 2016 Chinese Control and Decision Conference (CCDC), pp. 5274–5279 (May 2016).  https://doi.org/10.1109/CCDC.2016.7531941
  17. 17.
    Wenk, F., Röfer, T.: Online generated kick motions for the NAO balanced using inverse dynamics. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 25–36. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_3CrossRefGoogle Scholar
  18. 18.
    Xu, Y., Mellmann, H.: Adaptive motion control: dynamic kick for a humanoid robot. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T. (eds.) KI 2010. LNCS (LNAI), vol. 6359, pp. 392–399. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16111-7_45CrossRefGoogle Scholar
  19. 19.
    Yi, S.J., McGill, S., Lee, D.D.: Online kick generation method for humanoid soccer robots. In: The 8th Workshop on Humanoid Soccer Robots (2013). http://www.ais.uni-bonn.de/humanoidsoccer/ws13/papers/HSR13_Yi.pdf
  20. 20.
    Yi, S.J., McGill, S., He, Q., Hong, D., Lee, D.: Walk and kick motion generation for a general purpose full sized humanoid robot. In: Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MiamiCoral GablesUSA

Personalised recommendations