Advertisement

A Model-Free Algorithm of Moving Ball Interception by Holonomic Robot Using Geometric Approach

  • Pavel A. MakarovEmail author
  • Tolga Yirtici
  • Nurullah Akkaya
  • Ersin Aytac
  • Gorkem Say
  • Gokhan Burge
  • Berk Yilmaz
  • Rahib H. Abiyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

In this paper, one common problem for the teams competing in the RoboCup Small Size League (SSL) is addressed, namely the interception of a moving ball at an arbitrary aspect angle relative to the direction of the shot. We present a simple, robust and efficient algorithm for the interception of a moving ball by an omnidirectional SSL robot. The algorithm, designed on the basis of a heuristic approach, requires minimal knowledge of robot dynamics and relies on two key ideas. The first idea is the consideration of ball motion via transition to a reference frame where the ball is static, and the second one is planning the motion of the robot in such a reference frame from the geometric viewpoint. Experiments conducted in a real SSL environment confirmed the beneficial properties of the algorithm: it provides successful interception in a variety of scenarios, characterized by different directions of ball motion and the positional relationships between the ball, robot and goal.

Keywords

Interception skill Pass and shoot Mobile robot Holonomic motion Model-free methods 

References

  1. 1.
    Stolzenburg, F., Obst, O., Murray, J.: Qualitative velocity and ball interception. In: Jarke, M., Lakemeyer, G., Koehler, J. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 283–298. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45751-8_19CrossRefGoogle Scholar
  2. 2.
    Maire, F., Taylor, D.: A quadratic programming formulation of a moving ball interception and shooting behaviour, and its application to neural network control. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 327–332. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_34CrossRefGoogle Scholar
  3. 3.
    Maeda, K., Kohketsu, A., Takahashi, T.: Ball-receiving skill dependent on centering in soccer simulation games. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 152–161. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48422-1_12CrossRefGoogle Scholar
  4. 4.
    Bowling, M., Veloso, M.: Motion control in dynamic multi-robot environments. In: Veloso, M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 222–230. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45327-X_17CrossRefGoogle Scholar
  5. 5.
    Rahimi, M.M., et al.: Parsian extended team description for RoboCup. Robocup SSL, Nagoya, Japan (2017)Google Scholar
  6. 6.
    Abiyev, R.H., et al.: NEUIslanders Team Description Paper RoboCup 2019. Robocup SSL, Sydney, Australia (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Near East University, TRNCNicosiaCyprus

Personalised recommendations