Advertisement

Analysis of the PSO Parameters for a Robots Positioning System in SSL

  • Marcos Aurelio Pchek LaureanoEmail author
  • Flavio TonidandelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

The changes in the Small Size League rules have brought greater possibilities of playing. With the increased complexity of soccer matches, the positioning of the robots has become important as a defense and attack mechanism. The learning of opposing team game playing has been shown to be effective, but an SSL soccer match indicates the need for solutions that analyze the strategy of the opposing team during the game and make any necessary adaptations. This paper proposes the use of the Particle Swarm Optimization (PSO) algorithm as an option to determine the positioning during the match. A prototype has been developed to validate the configuration parameters. Experiments in a simulator, analysis of game logs and results in a real matches have demonstrated the feasibility of applying the PSO algorithm to find the robots positions.

Keywords

Robot soccer Particle Swarm Optimization (PSO) Small Size League (SSL) 

References

  1. 1.
    Albab, R.T.U., Wibowo, I.K., Basuki, D.K.: Path planning for mobile robot soccer using genetic algorithm. In: 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), pp. 276–280, September 2017.  https://doi.org/10.1109/ELECSYM.2017.8240416
  2. 2.
    Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight strategies in particle swarm optimization. In: 2011 Third World Congress on Nature and Biologically Inspired Computing, pp. 633–640, October 2011.  https://doi.org/10.1109/NaBIC.2011.6089659
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002).  https://doi.org/10.1109/4235.985692CrossRefGoogle Scholar
  4. 4.
    da Costa, I.T., da Silva, J.M.G., Greco, P.J., Mesquita, I.: Princípios táticos do jogo de futebol: conceitos e aplicação. Motriz. Revista de Educação Física 15(3), 657–668 (2009)Google Scholar
  5. 5.
    Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, pp. 94–100 (2001).  https://doi.org/10.1109/CEC.2001.934376
  6. 6.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, November 1995.  https://doi.org/10.1109/ICNN.1995.488968
  7. 7.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, 2002, CEC 2002, vol. 2, pp. 1671–1676 (2002).  https://doi.org/10.1109/CEC.2002.1004493
  8. 8.
    Larik, A.S., Haider, S.: A survey of nature inspired optimization algorithms applied to cooperative strategies in robot soccer. In: 2018 International Conference on Advancements in Computational Sciences (ICACS). IEEE, February 2018.  https://doi.org/10.1109/icacs.2018.8333485
  9. 9.
    Mendoza, J.P., Veloso, M., Simmons, R.: Selectively reactive coordination for a team of robot soccer champions. In: Proceedings of the Association for the Advancement of Artificial Intelligence Conference (AAAI) (2016)Google Scholar
  10. 10.
    Monajjemi, V., Koochakzadeh, A., Ghidary, S.S.: grSim – RoboCup small size robot soccer simulator. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U. (eds.) RoboCup 2011. LNCS (LNAI), vol. 7416, pp. 450–460. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32060-6_38CrossRefGoogle Scholar
  11. 11.
    Okada, H., Wada, T., Yamashita, A.: Evolving RoboCup Soccer player formations by particle swarm optimization. In: SICE Annual Conference 2011, pp. 1950–1953 (2011)Google Scholar
  12. 12.
    Quintero, C., Rodríguez, S., Pérez, K., López, J., Rojas, E., Calderón, J.: Learning soccer drills for the small size league of RoboCup. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 395–406. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_32CrossRefGoogle Scholar
  13. 13.
    Saska, M., Macas, M., Preucil, L., Lhotska, L.: Robot path planning using particle swarm optimization of ferguson splines. In: 2006 IEEE Conference on Emerging Technologies and Factory Automation, pp. 833–839, September 2006.  https://doi.org/10.1109/ETFA.2006.355416
  14. 14.
    Schwab, D., Zhu, Y., Veloso, M.: Learning skills for small size league RoboCup. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 83–95. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27544-0_7CrossRefGoogle Scholar
  15. 15.
    Wahab, M.N.A., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10, e0122827 (2015).  https://doi.org/10.1371/journal.pone.0122827CrossRefGoogle Scholar
  16. 16.
    Wang, L., Liu, Y., Deng, H., Xu, Y.: Obstacle-avoidance path planning for soccer robots using particle swarm optimization. In: 2006 IEEE International Conference on Robotics and Biomimetics, pp. 1233–1238, December 2006.  https://doi.org/10.1109/ROBIO.2006.340104
  17. 17.
    Weitzenfeld, A., Biswas, J., Akar, M., Sukvichai, K.: RoboCup small-size league: past, present and future. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS (LNAI), vol. 8992, pp. 611–623. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18615-3_50CrossRefGoogle Scholar
  18. 18.
    Xin, J., Chen, G., Hai, Y.: A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In: 2009 International Joint Conference on Computational Sciences and Optimization, vol. 1, pp. 505–508, April 2009.  https://doi.org/10.1109/CSO.2009.420
  19. 19.
    Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, 38 (2015).  https://doi.org/10.1155/2015/931256MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Federal Institute of ParanaCuritibaBrazil
  2. 2.University Center of FEISão Bernardo do CampoBrazil

Personalised recommendations