Advertisement

The Role of Memory Systems in Neurodevelopmental Disorders of Language

  • Ioannis VogindroukasEmail author
  • Sophia Koukouvinou
  • Ilias Sasmatzoglou
  • Georgios P. D. Argyropoulos
Chapter
  • 49 Downloads
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Developmental language disorder (DLD) and developmental dyslexia (DD), two of the most prevalent neurodevelopmental disorders of language, have been associated with a core procedural learning impairment. In this chapter, we briefly review highlights from studies supporting the procedural deficit hypothesis (PDH) in accounting for the brain and behavioral correlates of DLD and DD. We finally discuss a number of translational predictions generated by this framework, in particular with respect to designing intervention programs.

Keywords

Neurodevelopmental disorders Developmental language disorder Dyslexia Procedural memory Declarative memory 

Abbreviations

DD

Developmental dyslexia

DLD

Developmental language disorder

PDH

Procedural deficit hypothesis

SLI

Specific language impairment

TD

Typical development/typically developing

References

  1. Aldridge, J. W., & Berridge, K. C. (1998). Coding of serial order by neostriatal neurons: A ‘natural action’ approach to movement sequence. Journal of Neuroscience, 18(7), 2777–2787.PubMedCrossRefGoogle Scholar
  2. Alt, M., Meyers, C., & Ancharski, A. (2012). Using principles of learning to inform language therapy design for children with specific language impairment. International Journal of Language & Communication Disorders, 47(5), 487–498.CrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.CrossRefGoogle Scholar
  4. Ashworth, A., Hill, C. M., Karmiloff-Smith, A., & Dimitriou, D. (2017). A cross-syndrome study of the differential effects of sleep on declarative memory consolidation in children with neurodevelopmental disorders. Developmental Science, 20(2), e12383.CrossRefGoogle Scholar
  5. Bishop, D. V., Snowling, M. J., Thompson, P. A., Greenhalgh, T., & Catalise-2 Consortium. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58(10), 1068–1080.PubMedCrossRefGoogle Scholar
  6. Boecker, H., Ceballos-Baumann, A. O., Bartenstein, P., Dagher, A., Forster, K., Haslinger, B., … Conrad, B. (2002). A H215O positron emission tomography study on mental imagery of movement sequences—The effect of modulating sequence length and direction. NeuroImage, 17, 999–1009.PubMedCrossRefGoogle Scholar
  7. Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., … Small, S. A. (2014). Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience, 17(12), 1798.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brown, W. E., Eliez, S., Menon, V., Rumsey, J. M., White, C. D., & Reiss, A. L. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56, 781–783.PubMedCrossRefGoogle Scholar
  9. Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., … Cohen, N. J. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Clahsen, H. (1989). The grammatical characterization of developmental dysphasia. Linguistics, 27, 897–920.CrossRefGoogle Scholar
  11. Conti-Ramsden, G., Ullman, M. T., & Lum, J. A. G. (2015). The relation between receptive grammar and procedural, declarative, and working memory in specific language impairment. Frontiers in Psychology, 6, 1090.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Conway, C. M., Arciuli, J., Lum, J. A., & Ullman, M. T. (2019). Seeing problems that may not exist: A reply to West et al.’s (2018) questioning of the procedural deficit hypothesis. Developmental Science, 4, e12814.CrossRefGoogle Scholar
  13. Cooper, C., Field, J., Goswami, U., Jenkins, R., & Sahakian, B. (2008). Final project report. London: Foresight Mental Capital and Wellbeing Project.Google Scholar
  14. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–684.CrossRefGoogle Scholar
  15. De Vries, M. H., Ulte, C., Zwitserlood, P., Szymanski, B., & Knecht, S. (2010). Increasing dopamine levels in the brain improves feedback-based procedural learning in healthy participants: An artificial-grammar-learning experiment. Neuropsychologia, 48(11), 3193–3197.PubMedCrossRefGoogle Scholar
  16. Dommett, E. J., Henderson, E. L., Westwell, M. S., & Greenfield, S. A. (2008). Methylphenidate amplifies long-term plasticity in the hippocampus via noradrenergic mechanisms. Learning & Memory, 15(8), 580–586.CrossRefGoogle Scholar
  17. Eckert, M. A., Berninger, V. W., Vaden, K. I., Jr., Gebregziabher, M., & Tsu, L. (2016). Gray matter features of reading disability: A combined meta-analytic and direct analysis approach. eNeuro, 3, ENEURO.0103-15.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Eckert, M. A., Leonard, C. M., Wilke, M., Eckert, M., Richards, T., Richards, A., & Berninger, V. (2005). Anatomical signatures of dyslexia in children: Unique information from manual and voxel-based morphometry brain measures. Cortex, 41, 304–315.PubMedCrossRefGoogle Scholar
  19. Eichenbaum, H. (2012). The cognitive neuroscience of memory: An introduction. 2. Oxford: Oxford University Press.Google Scholar
  20. Elbro, C., Dalby, M., & Maarbjerg, S. (2011). Language-learning impairments: A 30-year follow-up of language-impaired children with and without psychiatric, neurological and cognitive difficulties. International Journal of Language & Communication Disorders, 46(4), 437–448.CrossRefGoogle Scholar
  21. Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech, Language and Hearing Research, 52(2), 321–335.CrossRefGoogle Scholar
  22. Fawcett, A. J., & Nicholson, R. I. (1995). Persistent deficits in motor skill of children with dyslexia. Journal of Motor Behaviour, 27, 235–240.CrossRefGoogle Scholar
  23. Fawcett, A. J., & Nicolson, R. I. (2019). Development of dyslexia: The delayed neural commitment framework. Frontiers in Behavioral Neuroscience, 13, 112.PubMedPubMedCentralGoogle Scholar
  24. Gabriel, A., Maillart, C., Stefaniak, N., Lejeune, C., Desmottes, L., & Meulemans, T. (2013). Procedural learning in specific language impairment: Effects of sequence complexity. Journal of the International Neuropsychological Society, 19(3), 264–271.PubMedCrossRefGoogle Scholar
  25. Galli, G. (2014). What makes deeply encoded items memorable? Insights into the levels of processing framework from neuroimaging and neuromodulation. Frontiers in Psychiatry, 5, 61.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gerbier, E., & Toppino, T. C. (2015). The effect of distributed practice: Neuroscience, cognition, and education. Trends in Neuroscience and Education, 4(3), 49–59.CrossRefGoogle Scholar
  27. Goulandris, N. (2003). Dyslexia in different languages. Cross-linguistic comparisons. London: Whurr.Google Scholar
  28. Hedenius, M., Persson, J., Alm, P. A., Ullman, M. T., Howard, J. H., Jr., Howard, D. V., & Jennische, M. (2013). Impaired implicit sequence learning in children with developmental dyslexia. Research in Developmental Disabilities, 34(11), 3924–3935.PubMedCrossRefGoogle Scholar
  29. Hedenius, M., Persson, J., Tremblay, A., Adi-Japha, E., Veríssimo, J., Dye, C. D., … Ullman, M. T. (2011). Grammar predicts procedural learning and consolidation deficits in children with specific language impairment. Research in Developmental Disabilities, 32(6), 2362–2375.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hedenius, M., Ullman, M. T., Alm, P., Jennische, M., & Persson, J. (2013). Enhanced recognition memory after incidental encoding in children with developmental dyslexia. PLoS One, 8, e63998.  https://doi.org/10.1371/journal.pone.0063998CrossRefPubMedPubMedCentralGoogle Scholar
  31. Howard, J. H. J., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44(7), 1131–1144.PubMedCrossRefGoogle Scholar
  32. Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994). Motor sequence learning: A study with positron emission tomography. Journal of Neuroscience, 14, 3775–3790.PubMedCrossRefGoogle Scholar
  33. Kahta, S., & Schiff, R. (2016). Implicit learning deficits among adults with developmental dyslexia. Annals of Dyslexia, 66(2), 235–250.PubMedCrossRefGoogle Scholar
  34. Kelly, S. D., McDevitt, T., & Esch, M. (2009). Brief training with co-speech gesture lends a hand to word learning in a foreign language. Language and Cognitive Processes, 24(2), 313–334.CrossRefGoogle Scholar
  35. Kemény, F., & Lukács, Á. (2010). Impaired procedural learning in language impairment: Results from probabilistic categorization. Journal of Clinical and Experimental Neuropsychology, 32(3), 249–258.PubMedCrossRefGoogle Scholar
  36. Laasonen, M., Smolander, S., Lahti-Nuuttila, P., Leminen, M., Lajunen, H. R., Heinonen, K., … Leppänen, P. H. (2018). Understanding developmental language disorder-the Helsinki longitudinal SLI study (HelSLI): A study protocol. BMC Psychology, 6(1), 24.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Legge, E. L., Madan, C. R., Ng, E. T., & Caplan, J. B. (2012). Building a memory palace in minutes: Equivalent memory performance using virtual versus conventional environments with the Method of Loci. Acta psychologica, 141(3), 380–390.Google Scholar
  38. Leonard, L. B. (2014). Children with specific language impairment (2nd ed.). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  39. Lum, J. A., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in Developmental Disabilities, 34(10), 3460–3476.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lum, J. A. G., Conti-Ramsden, G., Morgan, A., & Ullman, T. (2014). Procedural learning deficits in specific language impairment (SLI): A meta-analysis of serial reaction time task performance. Cortex, 51, 1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Lum, J. A. G., Conti-Ramsden, G., Page, D., & Ullman, M. T. (2012). Working, declarative and procedural memory in specific language impairment. Cortex, 48(9), 1138–1154.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mayes, A. K., Reilly, S., & Morgan, A. T. (2015). Neural correlates of childhood language disorder: A systematic review. Developmental Medicine & Child Neurology, 57(8), 706–717.CrossRefGoogle Scholar
  43. Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. L. McGaugh, & N. W. Weinburger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York, NY: Guilford Press.Google Scholar
  44. Nicolson, R. I., & Fawcett, A. J. (1990). Automaticity: A new framework for dyslexia research? Cognition, 35, 159–182.PubMedCrossRefGoogle Scholar
  45. Nicolson, R. I., & Fawcett, A. J. (1994). Comparison of deficits in cognitive and motor skills among children with dyslexia. Annals of Dyslexia, 44, 147–164.PubMedCrossRefGoogle Scholar
  46. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neuroscience, 24, 508–511.CrossRefGoogle Scholar
  47. Norbury, C. F., Bishop, D. V. M., & Briscoe, J. (2001). Production of English finite verb morphology: A comparison of SLI and mild moderate hearing impairment. Journal of Speech, Language and Hearing Research, 44, 165–178.CrossRefGoogle Scholar
  48. Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: Multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8, 830.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Pavlidou, E. V., Williams, J. M. & Kelly, L. M. (2009). Artificial grammar learning in primary school children with and without developmental dyslexia. Annals of Dyslexia,59, 55–77.  https://doi.org/10.1007/s11881-009-0023-z PubMedCrossRefGoogle Scholar
  50. Pernet, C. R., Poline, J. B., Demonet, J. F., & Rousselet, G. A. (2009). Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neuroscience, 10, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Plante, E., Gomez, R., & Gerken, L. A. (2002). Sensitivity to word order cues by normal and language/learning disabled adults. Journal of Communication Disorders, 35(5), 453–462.PubMedCrossRefGoogle Scholar
  52. Repantis, D., Schlattmann, P., Laisney, O., & Heuser, I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research, 62(3), 187–206.PubMedCrossRefGoogle Scholar
  53. Rice, M. L., & Oetting, J. B. (1993). Morphological deficits of SLI children: Evaluation of number marking and agreement. Journal of Speech and Hearing Research, 36, 1249–1257.PubMedCrossRefGoogle Scholar
  54. Richlan, F., Kronbichler, M., & Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56(3), 1735–1742.PubMedCrossRefGoogle Scholar
  55. Roediger, H. L., III, & Butler, A. C. (2011). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15(1), 20–27.PubMedCrossRefGoogle Scholar
  56. Saint-Cyr, J. A., Taylor, A. E., & Lang, A. E. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941–959.PubMedCrossRefGoogle Scholar
  57. Schacter, D. L., & Tulving, E. (Eds.). (1994). Memory systems. Cambridge, MA: The MIT Press.Google Scholar
  58. Siegel, L. S. (1998). Phonological processing deficits and reading disabilities. In J. L. Metsala & L. C. Ehri (Eds.), Word recognition and beginning literacy (pp. 141–160). Mahwah, NJ: Lawrence Erlbaum Associates Inc..Google Scholar
  59. Siegel, L. S. (2006). Perspectives on dyslexia. Paediatrics & Child Health, 11(9), 581–587.CrossRefGoogle Scholar
  60. Squire, L. R., & Knowlton, B. (2000). The medial temporal lobe, the hippocampus, and the memory systems of the brain. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 765–780). Cambridge, MA: MIT Press.Google Scholar
  61. Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.PubMedCrossRefGoogle Scholar
  62. Stein, J. (2019). The current status of the magnocellular theory of developmental dyslexia. Neuropsychologia, 130, 66–77.PubMedCrossRefGoogle Scholar
  63. Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40, 1245–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ullman, M. T. (2001). A neurocognitive perspective on language: The declarative/procedural model. Nature Reviews Neuroscience, 2, 717–726.PubMedCrossRefGoogle Scholar
  65. Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231–270.PubMedCrossRefGoogle Scholar
  66. Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71, 31337273.CrossRefGoogle Scholar
  67. Ullman, M. T., & Lovelett, J. T. (2018). Implications of the declarative/procedural model for improving second language learning: The role of memory enhancement techniques. Second Language Research, 34(1), 39–65.CrossRefGoogle Scholar
  68. Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41(3), 399–433.PubMedCrossRefGoogle Scholar
  69. Ullman, M. T., & Pullman, M. Y. (2015). A compensatory role of declarative memory in neurodevelopmental disorders. Neuroscience & Biobehavioral Reviews, 51, 205–222.CrossRefGoogle Scholar
  70. Vellutino, F. R., Fletcher, J. M., Snowling, M., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 2–40.PubMedCrossRefGoogle Scholar
  71. West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C. (2018). The procedural learning deficit hypothesis of language learning disorders: We see some problems. Developmental Science, 21(2), e12552.CrossRefGoogle Scholar
  72. Whyte, A. R., & Williams, C. M. (2015). Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition, 31(3), 531–534.PubMedCrossRefGoogle Scholar
  73. Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584.PubMedCrossRefGoogle Scholar
  74. Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91, 415–438.CrossRefGoogle Scholar
  75. World Health Organization. (2019). International classification of diseases – 11th Revision (ICD-11). Geneva: WHO.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ioannis Vogindroukas
    • 1
    Email author
  • Sophia Koukouvinou
    • 2
  • Ilias Sasmatzoglou
    • 1
  • Georgios P. D. Argyropoulos
    • 3
  1. 1.IEEL, Institute for Research and Education in Speech TherapyIoanninaGreece
  2. 2.College for Humanistic Sciences–ICPSAthensGreece
  3. 3.Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital University of OxfordOxfordUK

Personalised recommendations