Advertisement

Lesion-Symptom Mapping in Speech and Language Disorders: A Translational Perspective

  • Georgios P. D. Argyropoulos
Chapter
  • 46 Downloads
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Modern lesion-symptom mapping methods offer highly sophisticated ways of identifying particular regions and networks, disruptions in which are causally associated with specific speech and language deficits. The translational insight afforded from these approaches is highly promising for improved patient care. This chapter briefly describes the history of and the major advances in the field, highlights the translational possibilities of advanced lesion-symptom mapping, and identifies challenges and future directions for these endeavors.

Keywords

Lesion-symptom mapping Stroke MRI 

Abbreviations

CT

Computed tomography

fMRI

Functional magnetic resonance imaging

LSM

Lesion-symptom mapping

MRI

Magnetic resonance imaging

NPM

Non-parametric mapping

PLORAS

Predict language outcome and recovery after stroke

tDCS

Transcranial direct current stimulation

TMS

Transcranial magnetic stimulation

VLBM

Voxel-based lesion-behavior mapping

VLSM

Voxel-based lesion-symptom mapping

References

  1. Amici, S., Ogar, J., Brambati, S. M., Miller, B. L., Neuhaus, J., Dronkers, N. L., & Gorno-Tempini, M. L. (2007). Performance in specific language tasks correlates with regional volume changes in progressive aphasia. Cognitive and Behavioral Neurology, 20(4), 203–211.  https://doi.org/10.1097/WNN.0b013e31815e6265CrossRefPubMedGoogle Scholar
  2. Argyropoulos, G. P. D. (2015). Experimental use of transcranial Direct Current Stimulation (tDCS) in relation to the cerebellum and language. In: P. Mariën & M. Manto (Eds.), The Linguistic Cerebellum (pp. 377–407). Academic Press.  https://doi.org/10.1016/B978-0-12-801608-4.00015-3CrossRefGoogle Scholar
  3. Argyropoulos, G. P. D., Loane, C., Roca-Fernandez, A., Lage-Martinez, C., Gurau, O., Irani, S. R., & Butler, C. R. (2019). Network-wide abnormalities explain memory variability in hippocampal amnesia. ELife, 8.  https://doi.org/10.7554/eLife.46156
  4. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805–821.  https://doi.org/10.1006/nimg.2000.0582CrossRefPubMedGoogle Scholar
  5. Baldo, J. V., Arévalo, A., Patterson, J. P., & Dronkers, N. F. (2013). Grey and white matter correlates of picture naming: Evidence from a voxel-based lesion analysis of the Boston Naming Test. Cortex, 49(3), 658–667.  https://doi.org/10.1016/j.cortex.2012.03.001CrossRefGoogle Scholar
  6. Baldo, J. V., Katseff, S., & Dronkers, N. F. (2012). Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: Evidence from voxel-based lesion symptom mapping. Aphasiology, 26(3–4), 338–354.  https://doi.org/10.1080/02687038.2011.602391CrossRefGoogle Scholar
  7. Baldo, J. V., Schwartz, S., Wilkins, D., & Dronkers, N. F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. Journal of the International Neuropsychological Society, 12(6), 896–900.  https://doi.org/10.1017/S1355617706061078
  8. Baldo, J. V., Wilson, S. M., & Dronkers, N. F. (2012). Uncovering the neural substrates of language: A voxel-based lesion-symptom mapping approach. In: M. Faust (Ed.), The Handbook of the Neuropsychology of Language (Vol. 2, pp. 582–594). John Wiley & Sons.  https://doi.org/10.1002/9781118432501.ch28CrossRefGoogle Scholar
  9. Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.  https://doi.org/10.1038/nn1050CrossRefPubMedGoogle Scholar
  10. Benton, A. L., & Joynt, R. J. (1960). Early descriptions of aphasia. Archives of Neurology, 3(2), 205–222.  https://doi.org/10.1001/archneur.1960.00450020085012CrossRefPubMedGoogle Scholar
  11. Boes, A. D., Prasad, S., Liu, H., Qi, L., Pascual-Leone, A., Caviness, V. S., & Fox, M. D. (2015). Network localization of neurological symptoms from focal brain lesions. Brain, 138(10), 3061–3075.  https://doi.org/10.1093/brain/awv228CrossRefPubMedPubMedCentralGoogle Scholar
  12. Borovsky, A., Saygin, A. P., Bates, E., & Dronkers, N. (2007). Lesion correlates of conversational speech production deficits. Neuropsychologia, 45(11), 2525–2533.  https://doi.org/10.1016/j.neuropsychologia.2007.03.023CrossRefGoogle Scholar
  13. Bouillaud, M. J. (1825). Recherches cliniques propres a démontrer que la perte de la parole correspond a la lésion des lobules antérieurs du cerveau, et a confirmer l’opinion de m. gall, sur le siège de l’organe du langage articule. Archives Generales de Medecine, 3, 25–45.Google Scholar
  14. Brett, M., Leff, A. P., Rorden, C., & Ashburner, J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. NeuroImage, 14(2), 486–500.  https://doi.org/10.1006/nimg.2001.0845CrossRefPubMedGoogle Scholar
  15. Broca, P. (1861). Remarques Sur Le Siège de La Faculté Du Langage Articulé Suivies d’une Observation d’aphemie. Bulletin et Memoires de la Societe d'Anthropologie de Paris.Google Scholar
  16. Broca, P. (1865). Sur Le Siege de La Faculte Du Langage Articule. Bulletin et Memoires de la Societe d'Anthropologie de Paris.CrossRefGoogle Scholar
  17. Brunner, E., & Munzel, U. (2000). The nonparametric Behrens-Fisher problem: asymptotic theory and a small-sample approximation. Biometrical Journal, 42(1), 17–25.  https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<17::AID-BIMJ17>3.0.CO;2-U
  18. Campana, S., Caltagirone, C., & Marangolo, P. (2015). Combining Voxel-based Lesion-symptom Mapping (VLSM) with A-tDCS language treatment: predicting outcome of recovery in nonfluent chronic aphasia. Brain Stimulation, 8(4), 769–776.  https://doi.org/10.1016/J.BRS.2015.01.413CrossRefGoogle Scholar
  19. Chao, L. L., & Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance. Journal of Cognitive Neuroscience, 10(2), 167–177.  https://doi.org/10.1162/089892998562636CrossRefPubMedGoogle Scholar
  20. Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384(6605), 159–161.  https://doi.org/10.1038/384159a0CrossRefPubMedGoogle Scholar
  21. Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic cases: high resolution MR imaging of the brains of leborgne and lelong. Brain, 130(5), 1432–1441.  https://doi.org/10.1093/brain/awm042CrossRefPubMedGoogle Scholar
  22. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145–177.  https://doi.org/10.1016/j.cognition.2003.11.002CrossRefGoogle Scholar
  23. Ellmore, T. M., Beauchamp, M. S., Breier, J. I., Slater, J. D., Kalamangalam, G. P., O’Neill, T. J., … Tandon, N. (2010). Temporal lobe white matter asymmetry and language laterality in epilepsy patients. NeuroImage, 49(3), 2033–2044.  https://doi.org/10.1016/J.NEUROIMAGE.2009.10.055CrossRefPubMedGoogle Scholar
  24. Fox, M. D. (2018). Mapping symptoms to brain networks with the human connectome. New England Journal of Medicine.  https://doi.org/10.1056/nejmra1706158CrossRefGoogle Scholar
  25. Frank, R. J., Damasio, H., & Grabowski, T. J. (1997). Brainvox: an interactive, multimodal visualization and analysis system for neuroanatomical imaging. NeuroImage, 5(1), 13–30.  https://doi.org/10.1006/nimg.1996.0250CrossRefPubMedGoogle Scholar
  26. Friedrich, F. J., Egly, R., Rafal, R. D., & Beck, D. (1998). Spatial attention deficits in humans: A comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology, 12(2), 193–207.  https://doi.org/10.1037/0894-4105.12.2.193CrossRefPubMedGoogle Scholar
  27. Harvey, D. Y., Wei, T., Ellmore, T. M., Hamilton, A. C., & Schnur, T. T. (2013). Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control. Neuropsychologia, 51(5), 789–801.  https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2013.01.028CrossRefPubMedGoogle Scholar
  28. Hillis, A. E. (2007). Aphasia: Progress in the last quarter of a century. Neurology, 69(2), 200–213.  https://doi.org/10.1212/01.wnl.0000265600.69385.6fCrossRefPubMedGoogle Scholar
  29. Hillis, A. E., Beh, Y. Y., Sebastian, R., Breining, B., Tippett, D. C., Wright, A., … Fridriksson, J. (2018). Predicting recovery in acute poststroke aphasia. Annals of Neurology, 83(3), 612–622.  https://doi.org/10.1002/ana.25184CrossRefPubMedPubMedCentralGoogle Scholar
  30. Inoue, K., Madhyastha, T., Rudrauf, D., Mehta, S., & Grabowski, T. (2014). What affects detectability of lesion-deficit relationships in lesion studies? NeuroImage Clinical, 6, 388–397.  https://doi.org/10.1016/j.nicl.2014.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  31. Karnath, H. O., Himmelbach, M., & Rorden, C. (2002). The subcortical anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain, 125(Pt 2), 350–360. http://www.ncbi.nlm.nih.gov/pubmed/11844735
  32. Karnath, H.-O. O., Sperber, C., & Rorden, C. (2019). Reprint of: Mapping human brain lesions and their functional consequences. NeuroImage, 190, 4–13. https://www.sciencedirect.com/science/article/pii/S105381191930045XCrossRefGoogle Scholar
  33. Kertesz, A., Harlock, W., & Coates, R. (1979). Computer tomographic localization, lesion size, and prognosis in aphasia and nonverbal impairment. Brain and Language, 8(1), 34–50.  https://doi.org/10.1016/0093-934X(79)90038-5CrossRefPubMedGoogle Scholar
  34. Kertesz, A., Lesk, D., & McCabe, P. (1977). Isotope localization of infarcts in aphasia. Archives of Neurology, 34(10), 590–601.  https://doi.org/10.1001/archneur.1977.00500220024004CrossRefGoogle Scholar
  35. Kimberg, D. Y., Coslett, H. B., & Schwartz, M. F. (2007). Power in voxel-based lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 1067–1080.  https://doi.org/10.1162/jocn.2007.19.7.1067CrossRefPubMedGoogle Scholar
  36. Kreisler, A., Godefroy, O., Delmaire, C., Debachy, B., Leclercq, M., Pruvo, J. P., & Leys, D. (2000). The anatomy of aphasia revisited. Neurology, 54(5), 1117–1123.  https://doi.org/10.1212/wnl.54.5.1117CrossRefPubMedGoogle Scholar
  37. Luzzatti, C., & Whitaker, H. (2001). Jean-Baptiste Bouillaud, Claude-François Lallemand, and the role of the frontal lobe. Archives of Neurology, 58(7), 1157.  https://doi.org/10.1001/archneur.58.7.1157CrossRefPubMedGoogle Scholar
  38. Maderwald, S., Thürling, M., Küper, M., Theysohn, N., Müller, O., Beck, A., … Timmann, D. (2012). Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. NeuroImage, 63(3), 1421–1431.  https://doi.org/10.1016/j.neuroimage.2012.07.063CrossRefPubMedGoogle Scholar
  39. Mah, Y.-H., Husain, M., Rees, G., & Nachev, P. (2014). Human brain lesion-deficit inference remapped. Brain, 137(9), 2522–2531.  https://doi.org/10.1093/brain/awu164CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mazzocchi, F., & Vignolo, L. A. (1979). Localisation of lesions in aphasia: Clinical-CT scan correlations in stroke patients. Cortex, 15(4), 627–653.  https://doi.org/10.1016/S0010-9452(79)80051-9CrossRefPubMedGoogle Scholar
  41. McEvoy, S. D., Lee, A., Poliakov, A., Friedman, S., Shaw, D., Browd, S. R., … Mac Donald, C. L. (2016). Longitudinal cerebellar diffusion tensor imaging changes in posterior Fossa syndrome. NeuroImage Clinical, 12, 582–590.  https://doi.org/10.1016/j.nicl.2016.09.007CrossRefPubMedPubMedCentralGoogle Scholar
  42. Medina, J., Kimberg, D. Y., Chatterjee, A., & Coslett, H. B. (2010). Inappropriate usage of the Brunner-Munzel Test in recent voxel-based lesion-symptom mapping studies. Neuropsychologia, 48(1), 341–343.  https://doi.org/10.1016/j.neuropsychologia.2009.09.016CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mesulam, M.-M., Thompson, C. K., Weintraub, S., & Rogalski, E. J. (2015). The Wernicke Conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 138(8), 2423–2437.  https://doi.org/10.1093/brain/awv154CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mohr, J. P., Pessin, M. S., Finkelstein, S., Funkenstein, H. H., Duncan, G. W., & Davis, K. R. (1978). Broca aphasia: pathologic and clinical. Neurology, 28, 311–324.Google Scholar
  45. Mummery, C. J., Patterson, K., Price, C. J., Ashburner, J., Frackowiak, R. S., & Hodges, J. R. (2000). A voxel-based morphometry study of semantic dementia: Relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47(1), 36–45. http://www.ncbi.nlm.nih.gov/pubmed/10632099CrossRefGoogle Scholar
  46. Naeser, M. A., & Hayward, R. W. (1978). Lesion localization in aphasia with cranial computed tomography and the boston diagnostic aphasia exam. Neurology, 28(6), 545–551.  https://doi.org/10.1212/wnl.28.6.545CrossRefPubMedGoogle Scholar
  47. Newhart, M., Ken, L., Kleinman, J. T., Heidler-Gary, J., & Hillis, A. E. (2007). Neural networks essential for naming and word comprehension. Cognitive and Behavioral Neurology, 20(1), 25–30.  https://doi.org/10.1097/WNN.0b013e31802dc4a7CrossRefPubMedGoogle Scholar
  48. Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solutions when predicting individual outcome from lesion site after stroke. NeuroImage, 145(January), 200–208.  https://doi.org/10.1016/J.NEUROIMAGE.2016.08.006CrossRefPubMedGoogle Scholar
  49. Price, C. J., Seghier, M. L., & Leff, A. P. (2010). Predicting language outcome and recovery after stroke: The PLORAS system. Nature Reviews Neurology, 6(4), 202–210.  https://doi.org/10.1038/nrneurol.2010.15CrossRefPubMedPubMedCentralGoogle Scholar
  50. Prins, R., & Bastiaanse, R. (2006). The early history of aphasiology: From the Egyptian surgeons (c. 1700 BC) to Broca (1861). Aphasiology, 8, 762–791.  https://doi.org/10.1080/02687030500399293CrossRefGoogle Scholar
  51. Pustina, D., Avants, B., Faseyitan, O. K., Medaglia, J. D., & Branch Coslett, H. (2018). Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia, 115(July), 154–166.  https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2017.08.027CrossRefPubMedGoogle Scholar
  52. Risse, G. L., Rubens, A. B., & Jordan, L. S. (1984). Disturbances of long-term memory in aphasic patients: A comparison of anterior and posterior lesions. Brain, 107(2), 605–617.  https://doi.org/10.1093/brain/107.2.605CrossRefPubMedGoogle Scholar
  53. Rorden, C., & Karnath, H.-O. (2004). Using human brain lesions to infer function: A relic from a past era in the FMRI age? Nature Reviews Neuroscience, 5(10), 813–819.  https://doi.org/10.1038/nrn1521CrossRefPubMedGoogle Scholar
  54. Rorden, C., Karnath, H.-O. O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19(7), 1081–1088.  https://doi.org/10.1162/jocn.2007.19.7.1081CrossRefPubMedGoogle Scholar
  55. Rudrauf, D., Mehta, S., Bruss, J., Tranel, D., Damasio, H., & Grabowski, T. J. (2008). Thresholding lesion overlap difference maps: Application to category-related naming and recognition deficits. NeuroImage, 41(3), 970–984.  https://doi.org/10.1016/j.neuroimage.2007.12.033CrossRefGoogle Scholar
  56. Rudrauf, D., Mehta, S., & Grabowski, T. J. (2008). Disconnection’s renaissance takes shape: Formal incorporation in group-level lesion studies. Cortex, 44(8), 1084–1096.  https://doi.org/10.1016/j.cortex.2008.05.005CrossRefGoogle Scholar
  57. Seghier, M. L., Lee, H. L., Schofield, T., Ellis, C. L., & Price, C. J. (2008). Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words. NeuroImage, 42(3), 1226–1236.  https://doi.org/10.1016/J.NEUROIMAGE.2008.05.029CrossRefPubMedPubMedCentralGoogle Scholar
  58. Seghier, M. L., Patel, E., Prejawa, S., Ramsden, S., Selmer, A., Lim, L., Browne, R., Rae, J., Haigh, Z., Ezekiel, D., & Hope, T. M. (2016). The PLORAS database: a data repository for predicting language outcome and recovery after stroke. Neuroimage, 124, 1208–1212.Google Scholar
  59. Signoret, J.-L., Castaigne, P., Lhermitte, F., Abelanet, R., & Lavorel, P. (1984). Rediscovery of Leborgne’s brain: anatomical description with CT scan. Brain and Language, 22(2), 303–319.  https://doi.org/10.1016/0093-934X(84)90096-8CrossRefPubMedGoogle Scholar
  60. Smith, D. V., Clithero, J. A., Rorden, C., & Karnath, H.-O. (2013). Decoding the anatomical network of spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1518–1523.  https://doi.org/10.1073/pnas.1210126110CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sperber, C., & Karnath, H.-O. (2017). Impact of correction factors in human brain lesion-behavior inference. Human Brain Mapping, 38(3), 1692–1701.  https://doi.org/10.1002/hbm.23490CrossRefPubMedGoogle Scholar
  62. Timmann, D., Konczak, J., Ilg, W., Donchin, O., Hermsdörfer, J., Gizewski, E. R., & Schoch, B. (2009). Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience, 162(3), 836–851.  https://doi.org/10.1016/j.neuroscience.2009.01.040CrossRefPubMedGoogle Scholar
  63. Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A., & Fellows, L. K. (2019). Lesion studies in contemporary neuroscience. Trends in Cognitive Sciences, 23(8), 653–671.  https://doi.org/10.1016/J.TICS.2019.05.009CrossRefPubMedGoogle Scholar
  64. Wang, J., Fan, L., Wang, Y., Xu, W., Jiang, T., Fox, P. T., … Jiang, T. (2015). Determination of the posterior boundary of Wernicke’s area based on multimodal connectivity profiles. Human Brain Mapping, 36(5), 1908–1924.  https://doi.org/10.1002/hbm.22745CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wernicke, C. (1874). Der aphasische symptomencomplex. Eine Psychologische Studie Auf Anatomischer Basis. [The Aphasia Symptom Complex. A Psychological Study on an Anatomical Basis]. Cohn.Google Scholar
  66. Wilson, S. M., & Saygin, A. P. (2004). Grammaticality judgment in aphasia: Deficits are not specific to syntactic structures, aphasic syndromes, or lesion sites. Journal of Cognitive Neuroscience, 16(2), 238–252.  https://doi.org/10.1162/089892904322984535CrossRefGoogle Scholar
  67. Zhang, Y., Kimberg, D. Y., Coslett, H. B., Schwartz, M. F., & Wang, Z. (2014). Multivariate lesion-symptom mapping using support vector regression. Human Brain Mapping, 35(12), 5861–5876.  https://doi.org/10.1002/hbm.22590CrossRefPubMedPubMedCentralGoogle Scholar

Further Reading

  1. Baldo, J. V., Wilson, S. M., & Dronkers, N. F. (2012). Uncovering the neural substrates of language: A voxel-based lesion–symptom mapping approach. The Handbook of the Neuropsychology of Language, 2, 582-594.CrossRefGoogle Scholar
  2. Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6, 448–450.CrossRefGoogle Scholar
  3. Price, C. J., Hope, T. M., & Seghier, M. L. (2017). Ten problems and solutions when predicting individual outcome from lesion site after stroke. Neuroimage, 145, 200–208.CrossRefGoogle Scholar
  4. Price, C. J., Seghier, M. L., & Leff, A. P. (2010). Predicting language outcome and recovery after stroke: the PLORAS system. Nature Reviews Neurology, 6, 202–210.CrossRefGoogle Scholar
  5. Pustina, D., Avants, B., Faseyitan, O. K., Medaglia, J. D., & Coslett, H. B. (2018). Improved accuracy of lesion to symptom mapping with multivariate sparse canonical correlations. Neuropsychologia, 115, 154–166.CrossRefGoogle Scholar
  6. Rorden, C., Karnath, H.-O., & Bonilha, L. (2007). Improving lesion-symptom mapping. Journal of Cognitive Neuroscience, 19, 1081–1088.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Georgios P. D. Argyropoulos
    • 1
  1. 1.Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital University of OxfordOxfordUK

Personalised recommendations